login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053699 a(n) = n^4 + n^3 + n^2 + n + 1. 29
1, 5, 31, 121, 341, 781, 1555, 2801, 4681, 7381, 11111, 16105, 22621, 30941, 41371, 54241, 69905, 88741, 111151, 137561, 168421, 204205, 245411, 292561, 346201, 406901, 475255, 551881, 637421, 732541, 837931, 954305, 1082401, 1222981 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = 11111 in base n.

a(n) = Phi_5(n), where Phi_k is the k-th cyclotomic polynomial.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index to values of cyclotomic polynomials of integer argument

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

a(n) = n^4 + n^3 + n^2 + n + 1 =(n^5-1)/(n-1).

G.f.: (1 + 16*x^2 + 6*x^3 + x^4)/(1-x)^5. - Colin Barker, Jan 10 2012

MAPLE

A053699 := proc(n)

        numtheory[cyclotomic](5, n) ;

end proc:

seq(A053699(n), n=0..20) ; # R. J. Mathar, Feb 07 2014

MATHEMATICA

f[n_]:=((1+n+n^2+n^3+n^4)); Table[f[n], {n, 0, 6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)

Join[{1}, Table[Total[n^Range[0, 4]], {n, 40}]] (* Harvey P. Dale, Feb 02 2014 *)

PROG

(MAGMA) [n^4+n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01 2011

(PARI) a(n)=polcyclo(5, n) \\ Charles R Greathouse IV, Jul 19 2011

(Maxima) A053699(n):=n^4 + n^3 + n^2 + n + 1$

makelist(A053699(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */

CROSSREFS

Sequence in context: A099083 A212523 A096944 * A152122 A260045 A267938

Adjacent sequences:  A053696 A053697 A053698 * A053700 A053701 A053702

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, Mar 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 19:21 EDT 2020. Contains 333127 sequences. (Running on oeis4.)