login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053676 Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives i values. 5
7, 41, 465, 2732, 3005, 20648, 48125, 94396, 129299, 282931, 789281, 835050, 1241217, 1292143, 1521647, 1603655, 2756953, 4847702, 5128447, 6242598 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(21) > 10^7. - Donovan Johnson, Sep 29 2010

REFERENCES

Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.

Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005, cites the Pollock reference.

LINKS

Table of n, a(n) for n=1..20.

EXAMPLE

Oc(7) = 231 = Oc(6) + Oc(5); Oc(41) = 45961 = Oc(40) + Oc(17); Oc(465) = 67029905 = Oc(454) + Oc(191)

CROSSREFS

Cf. A005900, A053677 (j values), A053678 (k values).

Sequence in context: A290044 A209113 A146991 * A002701 A057006 A144747

Adjacent sequences:  A053673 A053674 A053675 * A053677 A053678 A053679

KEYWORD

nice,nonn

AUTHOR

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 16 2000

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001

a(13)-a(16) from Donovan Johnson, Jun 21 2010

a(17)-a(20) from Donovan Johnson, Sep 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 05:44 EDT 2018. Contains 316519 sequences. (Running on oeis4.)