login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053657 a(n) = Product_{p prime} p^{ Sum_{k>=0} floor[(n-1)/((p-1)p^k)]}. 38
1, 2, 24, 48, 5760, 11520, 2903040, 5806080, 1393459200, 2786918400, 367873228800, 735746457600, 24103053950976000, 48206107901952000, 578473294823424000, 1156946589646848000, 9440684171518279680000, 18881368343036559360000, 271211974879377138647040000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
LCM of denominators of the coefficients of x^n*z^k in {-log(1-x)/x}^z as k=0..n, as described by triangle A075264.
Denominators of integer-valued polynomials on prime numbers (with degree n): 1/a(n) is a generator of the ideal formed by the leading coefficients of integer-valued polynomials on prime numbers with degree less than or equal to n.
Also the least common multiple of the orders of all finite subgroups of GL_n(Q) [Minkowski]. Schur's notation for the sequence is M_n = a(n+1). - Martin Lorenz (lorenz(AT)math.temple.edu), May 18 2005
This sequence also occurs in algebraic topology where it gives the denominators of the Laurent polynomials forming a regular basis for K*K, the hopf algebroid of stable cooperations for complex K-theory. Several different equivalent formulas for the terms of the sequence occur in the literature. An early reference is K. Johnson, Illinois J. Math. 28(1), 1984, pp.57-63 where it occurs in lines 1-5, page 58. A summary of some of the other formulas is given in the appendix to K. Johnson, Jour. of K-theory 2(1), 2008, 123-145. - Keith Johnson (johnson(AT)mscs.dal.ca), Nov 03 2008
a(n) is divisible by n!, by Legendre's formula for the highest power of a prime that divides n!. Also, a(n) is divisible by (n+1)! if and only if n+1 is not prime. - Jonathan Sondow, Jul 23 2009
Triangle A163940 is related to the divergent series 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ... for m =>-1. The left hand columns of this triangle can be generated with the MC polynomials, see A163972. The Minkowski numbers appear in the denominators of these polynomials. - Johannes W. Meijer, Oct 16 2009
Unsigned Stirling numbers of the first kind as [s + k, k] (Karamata's notation) where k = {0, 1, 2, ...} and s is in general complex results in Pochhammer[s,k]*(integer coefficient polynomial of (k-1) degree in s) / M[k], where M[k] is the least common multiple of the orders of all finite groups of n x n-matrices over rational numbers (Minkowiski's theorem) which is sequence A053657. - Lorenz H. Menke, Jr., Feb 02 2010
From Peter Bala, Feb 21 2011: (Start)
Given a subset S of the integers Z, Bhargava has shown how to associate with S a generalized factorial function, denoted n!_S, which shares many properties of the classical factorial function n!.
The present sequence is the generalized factorial function n!_S associated with the set of primes S = {2,3,5,7,...}. The associated generalized exponential function E(x) = Sum_{n>=1} x^(n-1)/a(n) vanishes at x = -2: i.e. Sum_{n>=1} (-2)^n/a(n) = 0.
For the table of associated generalized binomial coefficients n!_S/(k!_S*(n-k)!_S) see A186430.
This sequence is related to the Bernoulli polynomials in two ways [Chabert and Cahen]:
(1) a(n) = (n-1)!*A001898(n-1).
(2) (t/(exp(t)-1))^x = sum {n = 0..inf} P(n,x)*t^n/a(n+1),
where the P(n,x) are primitive polynomials in the ring Z[x].
If p_1,...,p_n are any n primes then the product of their pairwise differences Product_{i<j} (p_i - p_j) is a multiple of a(1)*a(2)*...*a(n-1).
(End)
LCM of denominators of the coefficients of S(m+n-1,m) as polynomial in m of degree 2*(n-1), as described by triangle A202339. - Vladimir Shevelev, Dec 17 2011
REFERENCES
J.-L. Chabert, S. T. Chapman and S. W. Smith, A basis for the ring of polynomials integer-valued on prime numbers, Factorization in integral domains, Lecture Notes in Pure and Appl. Math. 189, Dekker, New York, 1997.
H. Minkowski, Zur Theorie der quadratischen Formen, J. Reine Angew. Math. 101 (1887), 196-202. ( = Ges. Abh., pp. 212-218, Chelsea, New York, 1967.)
I. Schur, Über eine Klasse von endlichen Gruppen linearer Substitutionen, Sitzungsber. Preuss. Akad. Wiss. (1905), 77-91. ( = Ges. Abh., Bd. 1, pp. 128-142, Springer-Verlag, Berlin-Heidelberg-New York, 1973.)
LINKS
F. Bencherif, Sur une propriété des polynômes de Stirling, 26th Journées Arithmétiques, July 6-10, 2009, Université Jean Monnet, Saint-Etienne, France. [From Jonathan Sondow, Jul 23 2009]
M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly, 107 (2000), 783-799.
Paul-Jean Cahen, and J. L. Chabert, What You Should Know About Integer-Valued Polynomials, The American Mathematical Monthly, 123 (No. 4, 2016), 311-337.
J.-L. Chabert, Integer-valued polynomials on prime numbers and logarithm power expansion, European J. Combinatorics 28 (2007) 754-761. [From Jonathan Sondow, Jul 23 2009]
J. L. Chabert, About polynomials whose divided differences are integer-valued on prime numbers, ICM 2012 Proceedings, vol. I, pp. 1-7. Complete proceedings. (warning: file size is 26MB). - From N. J. A. Sloane, Nov 28 2012
Robert M. Guralnick and Martin Lorenz, Orders of Finite Groups of Matrices, arXiv:math/0511191 [math.GR], 2005.
K. Johnson, The action of the stable operations of complex K-theory on coefficient groups, Illinois J. Math. 28(1), 1984, pp. 57-63. [From Keith Johnson (johnson(AT)mscs.dal.ca), Nov 03 2008]
K. Johnson, The invariant subalgebra and anti-invariant submodule of K_*K_{(p)}, Jour. of K-theory 2(1), 2008, 123-145. [From Keith Johnson (johnson(AT)mscs.dal.ca), Nov 03 2008]
J.-P. Serre, Bounds for the orders of the finite subgroups of G(k), Group Representation Theory (eds. M. Geck, D. Testerman, J. Thevenaz), EPFL Press, Lausanne, 2006, 405-450.
Wikipedia, Bhargava factorial.
FORMULA
a(2n) = 2*a(2n-1). - Jonathan Sondow, Jul 23 2009
a(2*n+1) = 24^n * Product_{i=1..n} A202318(i). - Vladimir Shevelev, Dec 17 2011
For n>=0, A007814(a(n+1)) = n+A007814(n!). - Vladimir Shevelev, Dec 28 2011
a(n) = denominator([y^(n-1)] (y/(exp(y)-1))^x). - Peter Luschny, May 13 2019
Sum_{n>=1} 1/a(n) = A346046. - Amiram Eldar, Jul 02 2023
EXAMPLE
a(7)=24^3*Product_{i=1..3} A202318(i)=24^3*1*10*21=2903040. - Vladimir Shevelev, Dec 17 2011
MAPLE
A053657 := proc(n) local P, p, q, s, r;
P := select(isprime, [$2..n]); r:=1;
for p in P do s := 0; q := p-1;
do if q > (n-1) then break fi;
s := s + iquo(n-1, q); q := q*p; od;
r := r * p^s; od; r end: # Peter Luschny, Jul 26 2009
ser := series((y/(exp(y)-1))^x, y, 20): a := n -> denom(coeff(ser, y, n-1)):
seq(a(n), n=1..19); # Peter Luschny, May 13 2019
MATHEMATICA
m = 16; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, m}]]];
a[n_, k_] := Denominator[ Coefficient[s, x^n*z^k]];
Prepend[Apply[LCM, Table[a[n, k], {n, m}, {k, n}], {1}], 1]
(* Jean-François Alcover, May 31 2011 *)
a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[ Range[n] ]}]; Array[a, 30] (* Jean-François Alcover, Nov 22 2016 *)
PROG
(PARI) {a(n)=local(X=x+x^2*O(x^n), D); D=1; for(j=0, n-1, D=lcm(D, denominator( polcoeff(polcoeff((-log(1-X)/x)^z+z*O(z^j), j, z), n-1, x)))); return(D)} /* Paul D. Hanna, Jun 27 2005 */
(PARI) {a(n)=prod(i=1, #factor(n!)~, prime(i)^sum(k=0, #binary(n), floor((n-1)/((prime(i)-1)*prime(i)^k))))} /* Paul D. Hanna, Jun 27 2005 */
(PARI)
S(n, p) = {
my(acc = 0, tmp = p-1);
while (tmp < n, acc += floor((n-1)/tmp); tmp *= p);
return(acc);
};
a(n) = {
my(rv = 1);
forprime(p = 2, n, rv *= p^S(n, p));
return(rv);
};
vector(17, i, a(i)) \\ Gheorghe Coserea, Aug 24 2015
CROSSREFS
a(n) = n!*A163176(n). - Jonathan Sondow, Jul 23 2009
Cf. A202318.
Appears in A163972. - Johannes W. Meijer, Oct 16 2009
Sequence in context: A249277 A002552 A075265 * A079608 A257663 A292162
KEYWORD
easy,nonn,nice
AUTHOR
Jean-Luc Chabert, Feb 16 2000
EXTENSIONS
More terms from Paul D. Hanna, Jun 27 2005
Guralnick and Lorenz link updated by Johannes W. Meijer, Oct 09 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 17:42 EDT 2024. Contains 371254 sequences. (Running on oeis4.)