login
Number of nonisomorphic cyclic subgroups of general linear group GL(n,2).
7

%I #24 Jan 10 2022 03:45:36

%S 1,3,5,8,13,18,27,37,51,70,96,130,176,232,296,380,490,620,793,1019,

%T 1277,1624

%N Number of nonisomorphic cyclic subgroups of general linear group GL(n,2).

%D V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a053/A053651.java">Java program</a> (github)

%e a(5)=13 because the orders of the elements of GL(5,2) are {1,2,3,4,5,6,7,8,12,14,15,21,31}.

%Y Cf. A053658 (for GL(n,3)), A053660 (for GL(n, 4)).

%Y Cf. A062766 (for AGL(n,2)).

%K nonn,more

%O 1,2

%A _Vladeta Jovovic_, Mar 22 2000

%E a(15)-a(22) from _Sean A. Irvine_, Jan 10 2022