

A053647


First term of first sequence of n primes in arithmetic progression with a common difference equal to the product of first n primes.


0



2, 5, 7, 13, 37, 73, 7937, 7703, 272809, 640943, 5378959, 116137159, 3708797237, 114649314209, 158317270283
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(14) > 2^32 and a(15) > 2^32.  Jud McCranie


LINKS

Table of n, a(n) for n=1..15.
R. Chapman, Dirichlet's theorem: a real variable approach, 2008.
B. Green & T. Tao, The primes contain arbitrarily long arithmetic progressions, arXiv:math/0404188 [math.NT], 20042007.
Index entries for sequences related to primes in arithmetic progressions


EXAMPLE

For n=3, product of first 3 primes is 30. The first arithmetic progression of 3 primes with difference 30 starts at 7 (7, 37, 67), so a(3)=7.


MATHEMATICA

(* This program is not convenient beyond 10 terms *) r[p1_, n_] := Reduce[p[1] = p1; Equal @@ Append[Table[p[k + 1]  p[k], {k, 1, n  1}], Product[Prime[k], {k, 1, n}]], p[2], Primes]; a[n_] := a[n] = Catch[For[k = 1, k <= 10^5, k++, If[r[p1 = Prime[k], n] =!= False, Throw[p1]]]]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* JeanFrançois Alcover, Dec 27 2012 *)


CROSSREFS

Sequence in context: A177997 A238776 A141112 * A023242 A164570 A265811
Adjacent sequences: A053644 A053645 A053646 * A053648 A053649 A053650


KEYWORD

hard,nonn,nice


AUTHOR

G. L. Honaker, Jr., Feb 18 2000


EXTENSIONS

Last 3 terms from Jud McCranie, Feb 28 2000
a(14)a(15) from Donovan Johnson, Oct 20 2009


STATUS

approved



