The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053647 First term of first sequence of n primes in arithmetic progression with a common difference equal to the product of first n primes. 0
 2, 5, 7, 13, 37, 73, 7937, 7703, 272809, 640943, 5378959, 116137159, 3708797237, 114649314209, 158317270283 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(14) > 2^32 and a(15) > 2^32. - Jud McCranie LINKS R. Chapman, Dirichlet's theorem: a real variable approach, 2008. B. Green & T. Tao, The primes contain arbitrarily long arithmetic progressions, arXiv:math/0404188 [math.NT], 2004-2007. EXAMPLE For n=3, product of first 3 primes is 30. The first arithmetic progression of 3 primes with difference 30 starts at 7 (7, 37, 67), so a(3)=7. MATHEMATICA (* This program is not convenient beyond 10 terms *) r[p1_, n_] := Reduce[p[1] = p1; Equal @@ Append[Table[p[k + 1] - p[k], {k, 1, n - 1}], Product[Prime[k], {k, 1, n}]], p[2], Primes]; a[n_] := a[n] = Catch[For[k = 1, k <= 10^5, k++, If[r[p1 = Prime[k], n] =!= False, Throw[p1]]]]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Dec 27 2012 *) CROSSREFS Sequence in context: A177997 A238776 A141112 * A023242 A164570 A265811 Adjacent sequences:  A053644 A053645 A053646 * A053648 A053649 A053650 KEYWORD hard,nonn,nice AUTHOR G. L. Honaker, Jr., Feb 18 2000 EXTENSIONS Last 3 terms from Jud McCranie, Feb 28 2000 a(14)-a(15) from Donovan Johnson, Oct 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 12:00 EDT 2020. Contains 338066 sequences. (Running on oeis4.)