login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053585 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_k^e_k. 22

%I

%S 1,2,3,4,5,3,7,8,9,5,11,3,13,7,5,16,17,9,19,5,7,11,23,3,25,13,27,7,29,

%T 5,31,32,11,17,7,9,37,19,13,5,41,7,43,11,5,23,47,3,49,25,17,13,53,27,

%U 11,7,19,29,59,5,61,31,7,64,13,11,67,17,23,7,71,9,73,37,25,19,11,13,79

%N If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_k^e_k.

%C Let p be the largest prime dividing n, a(n) is the largest power of p dividing n.

%H T. D. Noe, <a href="/A053585/b053585.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A006530(n)^A071178(n). - _Reinhard Zumkeller_, Aug 27 2011

%F a(n) = A141809(n,A001221(n)). - _Reinhard Zumkeller_, Jan 29 2013

%e a(42)=7 because 42=2*3*7, a(144)=9 because 144=16*9=2^4*3^2.

%t Table[Power @@ Last @ FactorInteger @ n, {n, 79}] (* _Jean-François Alcover_, Apr 01 2011 *)

%o (Haskell)

%o a053585 = last . a141809_row -- _Reinhard Zumkeller_, Jan 29 2013

%o (PARI) a(n)=if(n>1,my(f=factor(n)); f[#f~,1]^f[#f~,2],1) \\ _Charles R Greathouse IV_, Nov 10 2015

%o (Python)

%o from sympy import factorint, primefactors

%o def a(n):

%o if n==1: return 1

%o p = primefactors(n)[-1]

%o return p**factorint(n)[p] # _Indranil Ghosh_, May 19 2017

%Y Cf. A020639, A006530, A034684, A028233, A053585, A051119, A008475.

%Y Different from A034699.

%K nonn,easy,nice

%O 1,2

%A Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000

%E More terms from Andrew Gacek (andrew(AT)dgi.net), Apr 20 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 16:44 EST 2018. Contains 318049 sequences. (Running on oeis4.)