This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053582 a(n+1) is the smallest prime ending with a(n), where a(1)=1. 12
 1, 11, 211, 4211, 34211, 234211, 4234211, 154234211, 3154234211, 93154234211, 2093154234211, 42093154234211, 342093154234211, 11342093154234211, 3111342093154234211, 63111342093154234211, 2463111342093154234211 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE The least prime ending with seed 1 is 11; the least prime ending with 11 is 211; the least prime ending with 211 is 4211. - Clark Kimberling, Sep 17 2015 MAPLE P:=proc(q, h) local a, b, c, d, n; a:=h; b:=1; print(1); for n from 1 to q do if isprime(n) then if a=(n mod 10^b) then print(n); a:=n; d:=a; b:=0; while d>0 do b:=b+1; d:=trunc(d/10); od; fi; fi; od; end: P(10^25, 1); # Paolo P. Lava, Jul 15 2014 MATHEMATICA f[n_] := f[n] = Block[{j = f[n - 1], k = 1, l = Floor[Log[10, f[n - 1]] + 1]},   While[m = k*10^l + j; ! PrimeQ@ m, k++ ]; m]; f[1] = 1; Array[f, 17] nxt[n_]:=Module[{k=1, p=10^IntegerLength[n]}, While[!PrimeQ[k*p+n], k++]; k*p+n]; NestList[nxt, 1, 20] (* Harvey P. Dale, Jul 14 2016 *) CROSSREFS Cf. A261114. Sequence in context: A249604 A038399 A053547 * A077714 A089567 A110747 Adjacent sequences:  A053579 A053580 A053581 * A053583 A053584 A053585 KEYWORD base,nonn AUTHOR G. L. Honaker, Jr., Jan 18 2000 EXTENSIONS a(14)-a(17) corrected by Robert G. Wilson v, Dec 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 10:48 EST 2018. Contains 318049 sequences. (Running on oeis4.)