This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053498 Number of degree-n permutations of order dividing 8. 3

%I

%S 1,1,2,4,16,56,256,1072,11264,78976,672256,4653056,49810432,433429504,

%T 4448608256,39221579776,607251736576,7244686764032,101611422797824,

%U 1170362064019456,19281174853615616,261583327556386816,4084459360167657472,54366023748591386624

%N Number of degree-n permutations of order dividing 8.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

%H Alois P. Heinz, <a href="/A053498/b053498.txt">Table of n, a(n) for n = 0..200</a>

%H L. Moser and M. Wyman, <a href="http://dx.doi.org/10.4153/CJM-1955-020-0">On solutions of x^d = 1 in symmetric groups</a>, Canad. J. Math., 7 (1955), 159-168.

%F E.g.f.: exp(x + x^2/2 + x^4/4 + x^8/8).

%p a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,

%p add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 4, 8])))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 14 2013

%t CoefficientList[Series[Exp[x+x^2/2+x^4/4+x^8/8], {x, 0, 23}], x]*Range[0, 23]! (* _Jean-François Alcover_, Mar 24 2014 *)

%o (PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^4/4 +x^8/8) )) \\ _G. C. Greubel_, May 14 2019

%o (MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^4/4 +x^8/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 14 2019

%o (Sage) m = 30; T = taylor(exp(x +x^2/2 +x^4/4 +x^8/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 14 2019

%Y Cf. A000085, A001470, A001472, A053495-A053505, A005388, A261428.

%Y Column k=8 of A008307.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jan 15 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 21:25 EDT 2019. Contains 325144 sequences. (Running on oeis4.)