login
Number of degree-n permutations of order dividing 7.
6

%I #26 Sep 08 2022 08:45:00

%S 1,1,1,1,1,1,1,721,5761,25921,86401,237601,570241,1235521,892045441,

%T 13348249201,106757164801,604924594561,2722120577281,10344007402561,

%U 34479959558401,24928970490633601,546446134633639681,6281586217487489041,50248618811434961281

%N Number of degree-n permutations of order dividing 7.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

%H Alois P. Heinz, <a href="/A053497/b053497.txt">Table of n, a(n) for n = 0..200</a>

%H L. Moser and M. Wyman, <a href="http://dx.doi.org/10.4153/CJM-1955-020-0">On solutions of x^d = 1 in symmetric groups</a>, Canad. J. Math., 7 (1955), 159-168.

%F E.g.f.: exp(x + x^7/7).

%F a(n) = Sum_{k=0..floor(n/7)} n!/(7^k*k!*(n-7*k)!). - _G. C. Greubel_, Mar 07 2021

%p a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,

%p add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 7])))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 14 2013

%t CoefficientList[Series[Exp[x+x^7/7], {x, 0, 24}], x]*Range[0, 24]! (* _Jean-François Alcover_, Mar 24 2014 *)

%o (PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^7/7) )) \\ _G. C. Greubel_, May 14 2019

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 31); Coefficients(R!(Laplace( Exp(x + x^7/7) ))); // _G. C. Greubel_, May 14 2019, Mar 07, 2021

%o (Sage) f=factorial; [sum(f(n)/(7^j*f(j)*f(n-7*j)) for j in (0..n/7)) for n in (0..30)] # _G. C. Greubel_, May 14 2019

%Y Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), A118934 (m=4), A052501 (m=5), A293588 (m=6), this sequence (m=7).

%Y Cf. A000085, A001470, A001472, A005388, A053495 - A053505, A261427.

%Y Column k=7 of A008307.

%K nonn

%O 0,8

%A _N. J. A. Sloane_, Jan 15 2000