This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053439 Expansion of (1+x+2*x^3)/((1-x)*(1-x^2)^2). 3
 1, 2, 4, 8, 11, 18, 22, 32, 37, 50, 56, 72, 79, 98, 106, 128, 137, 162, 172, 200, 211, 242, 254, 288, 301, 338, 352, 392, 407, 450, 466, 512, 529, 578, 596, 648, 667, 722, 742, 800, 821, 882, 904, 968, 991, 1058, 1082, 1152, 1177, 1250, 1276 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) gives the number of vertices encountered along the shortest walk that encounters every edge at least once on the complete graph with n + 1 vertices. - Peter Kagey, Nov 17 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA Even: a(2*n)= 2* n^2 +n +1, odd: a(2*n-1)= 2* n^2. - Frank Ellermann, Feb 11 2002 a(n) = Sum_{k=0..n} binomial(n, k mod 2). - Paul Barry, Jul 24 2003 a(n) = A128223(n) + 1. - Peter Kagey, Nov 17 2016 E.g.f.: (1 + x)*((2 + x)*cosh(x) + (1 + x)*sinh(x))/2. - Ilya Gutkovskiy, Nov 17 2016 EXAMPLE G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 11*x^4 + 18*x^5 + 22*x^6 + 32*x^7 + 37*x^8 + ... MATHEMATICA CoefficientList[Series[(1+x+2x^3)/((1-x)(1-x^2)^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {1, 2, 4, 8, 11}, 50] (* Harvey P. Dale, Apr 26 2011 *) PROG (PARI) x='x+O('x^30); Vec((1+x+2*x^3)/((1-x)*(1-x^2)^2)) \\ G. C. Greubel, May 26 2018 (MAGMA) I:=[1, 2, 4, 8, 11]; [n le 5 select I[n] else Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4) +self(n-5): n in [1..30]]; // G. C. Greubel, May 26 2018 CROSSREFS Cf. A128223. Sequence in context: A295674 A120632 A007295 * A180379 A033956 A282620 Adjacent sequences:  A053436 A053437 A053438 * A053440 A053441 A053442 KEYWORD nonn,easy,changed AUTHOR N. J. A. Sloane, Jan 12 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 06:54 EDT 2019. Contains 326162 sequences. (Running on oeis4.)