login
A053417
Circle numbers (version 5): a(n) = number of points (i+j/2,j*sqrt(3)/2), i,j integers (triangular grid) contained in a circle of diameter n, centered at (1/2,0).
13
0, 2, 4, 10, 14, 24, 30, 48, 60, 76, 92, 110, 130, 154, 178, 208, 230, 264, 288, 330, 364, 406, 442, 482, 522, 564, 614, 664, 712, 766, 812, 874, 922, 990, 1050, 1112, 1176, 1240, 1312, 1382, 1452, 1530, 1598, 1684, 1750, 1840, 1920, 2008, 2092, 2182, 2266
OFFSET
0,2
COMMENTS
Equivalently, number of points in a hexagonal lattice covered by a circular disk of diameter n if the center of the circle is chosen at the middle between two lattice points. - Hugo Pfoertner, Jan 07 2007
Same as above but "number of disks (r = 1)" instead of "number of points". a(2^n - 1) = A239073(n), n >= 1. See illustration in links. - Kival Ngaokrajang, Apr 06 2014
FORMULA
a(n)/(n/2)^2 -> Pi*2/sqrt(3).
MATHEMATICA
a[n_] := Sum[dj = Sqrt[Abs[4*n^2 + 6*i - 3*i^2 - 3]]/4; j1 = (1 - 2*i)/4 - dj // Floor; j2 = (1 - 2*i)/4 + dj // Ceiling; Sum[ Boole[i^2 - i - j/2 + i*j + j^2 + 1/4 <= n^2/4], {j, j1, j2}], {i, -n - 1, n + 3}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 06 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 10 2000
EXTENSIONS
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
STATUS
approved