login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere. 6

%I

%S 1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,9,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,11,1,3,

%T 1,7,1,3,1,8,1,3,1,7,1,3,1,9,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,15,1,3,1,7,

%U 1,3,1,8,1,3,1,7,1,3,1,9,1,3,1,7,1,3,1,8,1,3,1,7,1,3,1,11,1,3,1,7,1,3

%N Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere.

%C The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.

%C b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - _Christian G. Bower_, May 18 2005

%C a(n-1) is multiplicative. - _Christian G. Bower_, Jun 03 2005

%D J. Frank Adams, Vector fields on spheres, Topology, 1 (1962), 63-65.

%D J. Frank Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962) 39-41.

%D J. Frank Adams, Vector fields on spheres, Annals of Math. 75 (1962) 603-632.

%D A. Hurwitz, Uber die Komposition der quadratischen formen, Math. Annalen 88 (1923) 1-25.

%D M. Kervaire, Non-parallelizability of the sphere for n > 7, Proc. Nat. Acad. Sci. USA 44 (1958) 280-283.

%D J. Milnor, Some consequences of a theorem of Bott, Annals Math. 68 (1958) 444-449.

%D J. Radon, Lineare Scharen Orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922) 1-14.

%H T. D. Noe, <a href="/A053381/b053381.txt">Table of n, a(n) for n=0..10000</a>

%F Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.

%F a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - _Johannes W. Meijer_, Jun 07 2011

%F a(n) = A209675(n+1) - 1. - _Reinhard Zumkeller_, Mar 11 2012

%p with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2,1,2],4): d := iquo(ifactors(n+1)[2,1,2],4): printf(`%d,`, 2^c+8*d-1) od:

%p nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # [_Johannes W. Meijer_, Jun 07 2011, revised Jan 29 2013]

%t a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* _Jean-François Alcover_, May 16 2013, translated from C *)

%o (C) int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1,2,... */ int b,c,d,rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }

%Y For another version see A003484. Cf. A047680, A001676.

%Y Cf. A047530, A220466.

%K nonn,nice,easy,mult

%O 0,2

%A _Warren D. Smith_, Jan 06 2000

%E More terms from _James A. Sellers_, Jun 01 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 03:47 EST 2014. Contains 249839 sequences.