OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
Index entries for linear recurrences with constant coefficients, signature (29,-343,2135,-7504,14756,-14832,5760).
FORMULA
a(n) = (8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6.
G.f.: x*(1224*x^5-1562*x^4+787*x^3-190*x^2+22*x-1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Jul 29 2012
a(n) = 29*a(n-1) - 343*a(n-2) + 2135*a(n-3) - 7504*a(n-4) + 14756*a(n-5) - 14832*a(n-6) + 5760*a(n-7) for n > 6. - Wesley Ivan Hurt, Oct 06 2017
MAPLE
A053155:=n->(8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6: seq(A053155(n), n=0..30); # Wesley Ivan Hurt, Oct 06 2017
MATHEMATICA
Table[(8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6, {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{29, -343, 2135, -7504, 14756, -14832, 5760}, {0, 1, 7, 50, 397, 3366, 29197}, 30] (* Vincenzo Librandi, Oct 07 2017 *)
PROG
(PARI) for(n=0, 50, print1((8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6, ", ")) \\ G. C. Greubel, Oct 06 2017
(Magma) [(8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6: n in [0..50]]; // G. C. Greubel, Oct 06 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Feb 28 2000
STATUS
approved