login
Binomial coefficients C(2*n-7,8).
7

%I #34 Oct 21 2022 09:45:12

%S 9,165,1287,6435,24310,75582,203490,490314,1081575,2220075,4292145,

%T 7888725,13884156,23535820,38608020,61523748,95548245,145008513,

%U 215553195,314457495,450978066,636763050,886322710,1217566350,1652411475,2217471399,2944827765,3872894697

%N Binomial coefficients C(2*n-7,8).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

%H Vincenzo Librandi, <a href="/A053130/b053130.txt">Table of n, a(n) for n = 8..200</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Milan Janjić, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%F a(n) = binomial(2*n-7, 8) if n >= 8 else 0.

%F G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9.

%F a(n) = A053123(n,8), n >= 8; a(n) := 0, n=0..7, (ninth column of shifted Chebyshev's S-triangle, decreasing order).

%F From _Amiram Eldar_, Oct 21 2022: (Start)

%F Sum_{n>=8} 1/a(n) = 37276/105 - 512*log(2).

%F Sum_{n>=8} (-1)^n/a(n) = 592/21 - 16*Pi + 32*log(2). (End)

%t Table[Binomial[2*n-7,8], {n,8,50}] (* _G. C. Greubel_, Aug 26 2018 *)

%o (Magma) [Binomial(2*n-7, 8): n in [8..50]]; // _Vincenzo Librandi_, Apr 07 2011

%o (PARI) for(n=8,50, print1(binomial(2*n-7,8), ", ")) \\ _G. C. Greubel_, Aug 26 2018

%Y Cf. A053123, A053129.

%K nonn,easy

%O 8,1

%A _Wolfdieter Lang_