The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053130 Binomial coefficients C(2*n-7,8). 6
 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 8,1 COMMENTS a(n)= A053123(n,8), n >= 8; a(n) := 0, n=0..7,(ninth column of shifted Chebyshev's S-triangle, decreasing order) REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings). LINKS Vincenzo Librandi, Table of n, a(n) for n = 8..200 Milan Janjic, Two Enumerative Functions M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1). FORMULA a(n) = binomial(2*n-7, 8) if n >= 8 else 0. G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9. MATHEMATICA Table[Binomial[2*n-7, 8], {n, 8, 50}] (* G. C. Greubel, Aug 26 2018 *) PROG (MAGMA) [Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011 (PARI) for(n=8, 50, print1(binomial(2*n-7, 8), ", ")) \\ G. C. Greubel, Aug 26 2018 CROSSREFS Cf. A053123, A053129. Sequence in context: A041144 A212334 A086759 * A219074 A166180 A004107 Adjacent sequences:  A053127 A053128 A053129 * A053131 A053132 A053133 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 03:33 EDT 2021. Contains 343145 sequences. (Running on oeis4.)