login
A053115
a(n) = ((8*n+10)(!^8))/20, related to A034908 ((8*n+2)(!^8) octo- or 8-factorials).
3
1, 18, 468, 15912, 668304, 33415200, 1938081600, 127913385600, 9465590534400, 776178423820800, 69856058143872000, 6845893698099456000, 725664731998542336000, 82725779447833826304000
OFFSET
0,2
COMMENTS
Row m=10 of the array A(9; m,n) := ((8*n+m)(!^8))/m(!^8), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((8*n+10)(!^8))/10(!^8) = A034908(n+2)/10.
E.g.f.: 1/(1-8*x)^(9/4).
G.f.: 1/(1-18x/(1-8x/(1-26x/(1-16x/(1-34x/(1-24x/(1-42x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 17, 5!, 8}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nmax = 50}, CoefficientList[Series[1/(1 - 8*x)^(9/4), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
PROG
(PARI) x='x+O('x^25); Vec(serlaplace(1/(1-8*x)^(9/4))) \\ G. C. Greubel, Aug 26 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
CROSSREFS
Cf. A051189, A045755, A034908-12, A034975-6, A053114 (rows m=0..9).
Sequence in context: A254211 A086501 A204241 * A084273 A230587 A281161
KEYWORD
easy,nonn
STATUS
approved