login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053109 Expansion of 1/(1-10*x)^10. 4

%I

%S 1,100,5500,220000,7150000,200200000,5005000000,114400000000,

%T 2431000000000,48620000000000,923780000000000,16796000000000000,

%U 293930000000000000,4974200000000000000,81719000000000000000

%N Expansion of 1/(1-10*x)^10.

%C This is the tenth member of the k-family of sequences a(k,n) := k^n*binomial(n+k-1,k-1) starting with A000012 (powers of 1), A001787(n+1), A027472(n+3), A038846, A036071, A036084, A036226, A053107-9 for k=1..10.

%H G. C. Greubel, <a href="/A053109/b053109.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = 10^n*binomial(n+9, 9);

%F G.f.: 1/(1-10*x)^10.

%p seq(coeff(series(1/(1-10*x)^10, x, n+1), x, n), n = 0 .. 15); # _Muniru A Asiru_, Aug 16 2018

%t CoefficientList[Series[1/(1-10x)^10,{x,0,20}],x] (* or *) Table[10^n Binomial[n+9,9],{n,0,20}] (* _Harvey P. Dale_, May 19 2011 *)

%o (Sage)[lucas_number2(n, 10, 0)*binomial(n,9)/10 ^9 for n in range(9, 24)] # _Zerinvary Lajos_, Mar 13 2009

%o (PARI) vector(30,n,n--; 10^n*binomial(n+9, 9)) \\ _G. C. Greubel_, Aug 16 2018

%o (MAGMA) [10^n*Binomial(n+9, 9): n in [0..30]]; // _G. C. Greubel_, Aug 16 2018

%o (GAP) List([0..15],n->10^n*Binomial(n+9,9)); # _Muniru A Asiru_, Aug 16 2018

%K easy,nonn

%O 0,2

%A _Wolfdieter Lang_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 04:34 EDT 2020. Contains 335763 sequences. (Running on oeis4.)