login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053108 Expansion of 1/(1 - 9*x)^9. 5
1, 81, 3645, 120285, 3247695, 75996063, 1595917323, 30778405515, 554011299270, 9418192087590, 152574711818958, 2371843247367438, 35577648710511570, 517244277406668210, 7315311923322878970 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..400

FORMULA

a(n) = 9^n*binomial(n+8, 8).

G.f.: 1/(1 - 9*x)^9.

a(n) = 81*a(n-1) - 2916*a(n-2) + 61236*a(n-3) - 826686*a(n-4) + 7440174*a(n-5) - 44641044*a(n-6) + 172186884*a(n-7) - 387420489*a(n-8) + 387420489*a(n-9); a(0)=1, a(1)=81, a(2)=3645, a(3)=120285, a(4)=3247695, a(5)=75996063, a(6)=1595917323, a(7)=30778405515, a(8)=554011299270. - Harvey P. Dale, Jan 21 2012

MATHEMATICA

CoefficientList[Series[1/(1-9x)^9, {x, 0, 30}], x] (* Harvey P. Dale, Jan 21 2012 *)

PROG

(Sage)[lucas_number2(n, 9, 0)*binomial(n, 8)/9^8 for n in range(8, 23)] # Zerinvary Lajos, Mar 13 2009

(MAGMA) [Binomial(n+8, 8)*9^n: n in [0..20]]; // Vincenzo Librandi, Oct 13 2011

(PARI) vector(20, n, n--; 9^n*binomial(n+8, 8)) \\ G. C. Greubel, Aug 15 2018

CROSSREFS

Cf. A053107.

Sequence in context: A223477 A237842 A223501 * A237100 A245665 A016888

Adjacent sequences:  A053105 A053106 A053107 * A053109 A053110 A053111

KEYWORD

nonn,easy,changed

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 17:59 EST 2019. Contains 329925 sequences. (Running on oeis4.)