

A053074


Primes p such that p24, p and p+24 are consecutive primes.


3



16787, 40063, 42533, 96377, 98597, 104207, 119267, 123887, 160117, 161807, 169283, 181813, 185267, 208553, 209743, 232777, 235723, 243367, 246073, 260363, 261823, 270097, 295387, 295727, 302483, 315223, 331423, 362027, 364103, 373693
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In other words, balanced primes separated from the next lower and next higher prime neighbors by 24.


LINKS

Zak Seidov, Table of n, a(n) for n = 1..1000


FORMULA

a(n) = A052190(n) + 24.  Sean A. Irvine, Dec 06 2021


EXAMPLE

40063 is separated from both the next lower prime and the next higher prime by 24;
104207  24 = 104183 is prime, 104207 + 24 = 104231 is prime, and 104207 is the only prime between 104183 and 104231.


MAPLE

for i from 1 by 1 to 40000 do if ithprime(i+1) = ithprime(i) +24 and ithprime(i+2) = ithprime(i) + 48 then print(ithprime(i+1)); fi; od; # Zerinvary Lajos, May 04 2007


MATHEMATICA

lst={}; Do[p=Prime[n]; If[pPrime[n1]==Prime[n+1]p==6*4, AppendTo[lst, p]], {n, 2, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 20 2010 *)
Transpose[Select[Partition[Prime[Range[40000]], 3, 1], Differences[#]=={24, 24}&]][[2]] (* Harvey P. Dale, May 20 2014 *)


CROSSREFS

Cf. A052190.
Sequence in context: A068784 A183844 A034820 * A115923 A243836 A244107
Adjacent sequences: A053071 A053072 A053073 * A053075 A053076 A053077


KEYWORD

easy,nonn


AUTHOR

Harvey P. Dale, Feb 25 2000


EXTENSIONS

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Edited by Jon E. Schoenfield, Jan 09 2015


STATUS

approved



