

A053072


Primes p such that p12, p and p+12 are consecutive primes.


4



211, 1511, 4409, 4691, 7841, 9871, 11299, 11411, 11731, 12841, 15161, 16619, 17431, 17851, 18341, 18731, 19739, 19949, 20161, 20521, 20731, 21661, 22051, 22259, 23801, 25621, 26041, 28069, 29599, 30059, 31051, 32479, 34171, 35129
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In other words, balanced primes separated from the next lower and next higher prime neighbors by 12.


LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000


EXAMPLE

1511 is separated from both the next lower prime and the next higher prime by 12


MAPLE

for i from 1 by 1 to 5000 do if ithprime(i+1) = ithprime(i) +12 and ithprime(i+2) = ithprime(i) + 24 then print(ithprime(i+1));  Zerinvary Lajos, May 04 2007


MATHEMATICA

lst={}; Do[p=Prime[n]; If[pPrime[n1]==Prime[n+1]p==6*2, AppendTo[lst, p]], {n, 2, 2*7!}]; lst [From Vladimir Joseph Stephan Orlovsky, May 20 2010]
Transpose[Select[Partition[Prime[Range[4000]], 3, 1], Differences[#] == {12, 12}&]][[2]] (* Harvey P. Dale, Apr 07 2013 *)


CROSSREFS

Sequence in context: A241959 A179595 A137872 * A086978 A108829 A111480
Adjacent sequences: A053069 A053070 A053071 * A053073 A053074 A053075


KEYWORD

easy,nonn


AUTHOR

Harvey P. Dale, Feb 25 2000


EXTENSIONS

Corrected by Jud McCranie, Jan 04 2001
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar


STATUS

approved



