login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053027 Odd primes p with 2 zeros in Fibonacci numbers mod p. 9
3, 7, 23, 41, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 241, 263, 281, 283, 307, 347, 367, 383, 401, 409, 443, 449, 463, 467, 487, 503, 523, 547, 563, 569, 587, 601, 607, 641, 643, 647, 683, 727, 743, 769, 787, 823, 827, 863, 881, 883, 887, 907, 929 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also, odd primes that divide Lucas numbers of even index. - T. D. Noe, Jul 25 2003

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

C. Ballot and M. Elia, Rank and period of primes in the Fibonacci sequence; a trichotomy, Fib. Quart., 45 (No. 1, 2007), 56-63 (The sequence B3).

M. Renault, Fibonacci sequence modulo m

FORMULA

A prime p = prime(i) is in this sequence if p > 2 and A001602(i)/2 is even. - T. D. Noe, Jul 25 2003

CROSSREFS

Cf. A001176, A053028.

Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)), A053029 (primes dividing no Lucas number), A053032 (primes dividing Lucas numbers of odd index).

Sequence in context: A213897 A291776 A135570 * A133432 A133433 A029932

Adjacent sequences:  A053024 A053025 A053026 * A053028 A053029 A053030

KEYWORD

nonn

AUTHOR

Henry Bottomley, Feb 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 16:37 EST 2018. Contains 318229 sequences. (Running on oeis4.)