%I #32 Aug 03 2024 13:24:04
%S 1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,8,36,1,2,5,2,1,1,2,2,6,9,1,1,1,3,
%T 1,2,6,1,5,1,1,2,1,13,2,2,5,1,2,2,1,5,1,3,1,3,1,2,2,2,2,8,3,1,2,2,1,
%U 10,2,2,2,3,3,1,7,1,8,3,1,1,1,1,1,1,1,1,5,2,1,2,17,1,4,31,2,2,5,30,1,8,2,1
%N Continued fraction for M(1,sqrt(2)).
%C M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).
%D J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.
%D J. R. Goldman, The Queen of Mathematics, 1998, p. 92.
%H Harry J. Smith, <a href="/A053003/b053003.txt">Table of n, a(n) for n = 0..19999</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GausssConstant.html">Gauss's Constant</a>.
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e 1.19814023473559220743992249228...
%t ContinuedFraction[ArithmeticGeometricMean[1,Sqrt[2]],100] (* _Harvey P. Dale_, Feb 26 2012 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(agm(1, sqrt(2))); for (n=1, 20000, write("b053003.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 20 2009
%Y Cf. A014549, A053002 without the leading term, A053004 (decimal expansion).
%K nonn,cofr,nice,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 21 2000
%E More terms from _James A. Sellers_, Feb 22 2000
%E Offset changed by _Andrew Howroyd_, Aug 03 2024