login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052997 Expansion of (1+x-x^3)/((1-2*x)*(1-x^2)). 3
1, 3, 7, 14, 29, 58, 117, 234, 469, 938, 1877, 3754, 7509, 15018, 30037, 60074, 120149, 240298, 480597, 961194, 1922389, 3844778, 7689557, 15379114, 30758229, 61516458, 123032917, 246065834, 492131669, 984263338, 1968526677 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1075

Index entries for linear recurrences with constant coefficients, signature (2,1,-2).

FORMULA

G.f.: -(-x+x^3-1)/(-1+x^2)/(-1+2*x).

Recurrence: {a(0)=1, -2*a(n)-a(n+1)+a(n+2)-1, a(1)= 3, a(2)=7, a(3)=14}, 11/6*2^n + Sum(-1/6*(2 + _alpha)*_alpha^(-1-n), _alpha=RootOf(-1 + _Z^2))

a(n) = 2*a(n-1)+1 for even n, otherwise a(n) = 2*a(n-1), with a(0)=1, a(1)=3. [Bruno Berselli, Jun 19 2014]

3*a(n) = 11*2^(n-1)-A000034(n) for n>0. - R. J. Mathar, Feb 27 2019

MAPLE

spec := [S, {S=Prod(Union(Sequence(Prod(Z, Z)), Z), Sequence(Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

MATHEMATICA

f[s_List] := Block[{a = s[[-1]]}, Append[s, If[ OddQ@ Length@ s, 2a +1, 2a]]]; Join[{1},  Nest[f, {3}, 30]] (* or *)

CoefficientList[ Series[(1 + x - x^3)/(1 - 2x - x^2 + 2x^3), {x, 0, 30}], x] (* Robert G. Wilson v, Jul 20 2017 *)

LinearRecurrence[{2, 1, -2}, {1, 3, 7, 14}, 40] (* Harvey P. Dale, May 27 2019 *)

CROSSREFS

Sequence in context: A157672 A125899 A266791 * A267210 A074988 A265381

Adjacent sequences:  A052994 A052995 A052996 * A052998 A052999 A053000

KEYWORD

nonn,easy

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)