login
A052982
Expansion of ( 1-x ) / ( 1-2*x-2*x^2+x^4 ).
0
1, 1, 4, 10, 27, 73, 196, 528, 1421, 3825, 10296, 27714, 74599, 200801, 540504, 1454896, 3916201, 10541393, 28374684, 76377258, 205587683, 553388489, 1489577660, 4009555040, 10792677717, 29051077025, 78197931824, 210488462658, 566580111247, 1525086070785
OFFSET
0,3
FORMULA
G.f.: (1-x)/(1-2*x-2*x^2+x^4).
Recurrence: {a(1)=1, a(0)=1, a(2)=4, a(3)=10, a(n)-2*a(n+2)-2*a(n+3)+a(n+4)=0}.
Sum(-1/182*(-35*_alpha+2*_alpha^3+22*_alpha^2-25)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-2*_Z^2+_Z^4)).
MAPLE
spec := [S, {S=Sequence(Prod(Union(Prod(Z, Z), Z), Union(Sequence(Z), Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 2*x - 2*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 13 2014 *)
LinearRecurrence[{2, 2, 0, -1}, {1, 1, 4, 10}, 30] (* Harvey P. Dale, Oct 03 2016 *)
CROSSREFS
Sequence in context: A192879 A077923 A183325 * A108672 A000495 A027067
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved