login
A052973
Expansion of ( 1-x ) / ( 1-x-3*x^2+x^3 ).
4
1, 0, 3, 2, 11, 14, 45, 76, 197, 380, 895, 1838, 4143, 8762, 19353, 41496, 90793, 195928, 426811, 923802, 2008307, 4352902, 9454021, 20504420, 44513581, 96572820, 209609143, 454814022, 987068631, 2141901554, 4648293425
OFFSET
0,3
REFERENCES
Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
FORMULA
G.f.: -(-1+x)/(1-x-3*x^2+x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=3, a(n)-3*a(n+1)-a(n+2)+a(n+3)=0}
Sum(-1/74*(1-34*_alpha+9*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-_Z-3*_Z^2+_Z^3))
a(n) = A125691(n)-A125691(n-1). - R. J. Mathar, Feb 27 2019
MAPLE
spec := [S, {S=Sequence(Prod(Union(Prod(Union(Z, Z), Sequence(Z)), Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x-3x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{1, 3, -1}, {1, 0, 3}, 40] (* Harvey P. Dale, Sep 06 2017 *)
CROSSREFS
Sequence in context: A122672 A194608 A297870 * A087956 A116391 A305491
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved