This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052967 Expansion of (1-x)/(1-2*x-x^2+x^4). 0
 1, 1, 3, 7, 16, 38, 89, 209, 491, 1153, 2708, 6360, 14937, 35081, 82391, 193503, 454460, 1067342, 2506753, 5887345, 13826983, 32473969, 76268168, 179122960, 420687105, 988023201, 2320465339, 5449830919, 12799440072, 30060687862 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equals INVERT transform of (1, 2, 2, 1, 1, 1,...). [From Gary W. Adamson, Apr 28 2009] LINKS Shanzhen Gao, Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1039 Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1). FORMULA Recurrence: {a(1)=1, a(0)=1, a(2)=3, a(3)=7, a(n)-a(n+2)-2*a(n+3)+a(n+4)} Sum(-1/106*(-17-22*_alpha+10*_alpha^2+8*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-_Z^2+_Z^4)) a(n) = Sum_{k=0..n}(Sum_{l=0..k}(binomial(k,l)*Sum_{i=0..n-k-l}(binomial(l,i)*binomial(n-i-2*l-1,n-k-i-l)))). - Vladimir Kruchinin, Mar 16 2016 MAPLE spec := [S, {S=Sequence(Prod(Union(Prod(Z, Z), Z, Sequence(Z)), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); PROG (Maxima) a(n):=sum(sum(binomial(k, l)*sum(binomial(l, i)*binomial(n-i-2*l-1, n-k-i-l), i, 0, n-k-l), l, 0, k), k, 0, n); /* Vladimir Kruchinin, Mar 16 2016  */ (PARI) Vec((1-x)/(1-2*x-x^2+x^4) + O(x^40)) \\ Michel Marcus, Mar 16 2016 CROSSREFS Sequence in context: A095263 A010912 A192665 * A239040 A293065 A211278 Adjacent sequences:  A052964 A052965 A052966 * A052968 A052969 A052970 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.