login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052967 Expansion of (1-x)/(1-2*x-x^2+x^4). 0
1, 1, 3, 7, 16, 38, 89, 209, 491, 1153, 2708, 6360, 14937, 35081, 82391, 193503, 454460, 1067342, 2506753, 5887345, 13826983, 32473969, 76268168, 179122960, 420687105, 988023201, 2320465339, 5449830919, 12799440072, 30060687862 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equals INVERT transform of (1, 2, 2, 1, 1, 1,...). [From Gary W. Adamson, Apr 28 2009]

LINKS

Table of n, a(n) for n=0..29.

Shanzhen Gao, Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1039

Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1).

FORMULA

Recurrence: {a(1)=1, a(0)=1, a(2)=3, a(3)=7, a(n)-a(n+2)-2*a(n+3)+a(n+4)}

Sum(-1/106*(-17-22*_alpha+10*_alpha^2+8*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-_Z^2+_Z^4))

a(n) = Sum_{k=0..n}(Sum_{l=0..k}(binomial(k,l)*Sum_{i=0..n-k-l}(binomial(l,i)*binomial(n-i-2*l-1,n-k-i-l)))). - Vladimir Kruchinin, Mar 16 2016

MAPLE

spec := [S, {S=Sequence(Prod(Union(Prod(Z, Z), Z, Sequence(Z)), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

PROG

(Maxima)

a(n):=sum(sum(binomial(k, l)*sum(binomial(l, i)*binomial(n-i-2*l-1, n-k-i-l), i, 0, n-k-l), l, 0, k), k, 0, n); /* Vladimir Kruchinin, Mar 16 2016  */

(PARI) Vec((1-x)/(1-2*x-x^2+x^4) + O(x^40)) \\ Michel Marcus, Mar 16 2016

CROSSREFS

Sequence in context: A095263 A010912 A192665 * A239040 A293065 A211278

Adjacent sequences:  A052964 A052965 A052966 * A052968 A052969 A052970

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.