This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052965 Expansion of (1-x)/(1-3x-4x^2+4x^3). 0
 1, 2, 10, 34, 134, 498, 1894, 7138, 26998, 101970, 385350, 1455938, 5501334, 20786354, 78540646, 296762018, 1121303222, 4236795154, 16008550278, 60487618562, 228549876182, 863565901682, 3262946735526, 12328904308578 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1036 Index entries for linear recurrences with constant coefficients, signature (3,4,-4) FORMULA G.f.: -(-1+x)/(1-3*x-4*x^2+4*x^3) Recurrence: {a(0)=1, a(1)=2, a(2)=10, 4*a(n)-4*a(n+1)-3*a(n+2)+a(n+3)=0} Sum(-1/158*(-17-49*_alpha+40*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z-4*_Z^2+4*_Z^3)) MAPLE spec := [S, {S=Sequence(Prod(Union(Z, Z, Sequence(Z)), Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); MATHEMATICA CoefficientList[Series[(1-x)/(1-3x-4x^2+4x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{3, 4, -4}, {1, 2, 10}, 40] (* Harvey P. Dale, Dec 01 2016 *) CROSSREFS Sequence in context: A119193 A124634 A192378 * A108924 A221492 A116898 Adjacent sequences:  A052962 A052963 A052964 * A052966 A052967 A052968 KEYWORD easy,nonn,changed AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.