login
Expansion of (1-2x^2)/(1-x-3x^2+2x^4).
15

%I #22 Mar 04 2022 17:07:05

%S 1,1,2,5,9,22,45,101,218,477,1041,2270,4957,10813,23602,51501,112393,

%T 245270,535245,1168053,2549002,5562621,12139137,26490894,57810301,

%U 126157741,275310370,600801805,1311112313,2861202246,6243918445

%N Expansion of (1-2x^2)/(1-x-3x^2+2x^4).

%H Harvey P. Dale, <a href="/A052962/b052962.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1033">Encyclopedia of Combinatorial Structures 1033</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,0,-2).

%F G.f.: -(-1+2*x^2)/(1-3*x^2+2*x^4-x)

%F Recurrence: {a(1)=1, a(0)=1, a(3)=5, a(2)=2, 2*a(n)-3*a(n+2)-a(n+3)+a(n+4)=0}

%F Sum(-1/397*(-190*_alpha-78*_alpha^2+116*_alpha^3+15)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z^2+2*_Z^4-_Z))

%p spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Union(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);

%t CoefficientList[Series[(1-2x^2)/(1-x-3x^2+2x^4),{x,0,30}],x] (* or *) LinearRecurrence[{1,3,0,-2},{1,1,2,5},40] (* _Harvey P. Dale_, Feb 20 2016 *)

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, May 04 2000