OFFSET
0,1
COMMENTS
For n > 2, a(n) = floor(sqrt(a(n-3)*a(n-2) + a(n-2)*a(n-1) + a(n-1)*a(n-3))). - Gerald McGarvey, Sep 19 2004
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1025
Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1).
FORMULA
G.f.: (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).
a(n) = a(n-2) + a(n-3) - 1.
a(n) = 1 + Sum_{alpha=RootOf(-1+z^2+z^3)} (1/23)*(3 +7*alpha -2*alpha^2) * alpha^(-1-n).
lim n->inf a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006) - Gerald McGarvey, Sep 19 2004
a(n) = 1 + A000931(n+3). - G. C. Greubel, Oct 22 2019
MAPLE
spec:= [S, {S=Union(Sequence(Prod(Union(Prod(Z, Z), Z), Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
seq(coeff(series((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 22 2019
MATHEMATICA
LinearRecurrence[{1, 1, 0, -1}, {2, 1, 2, 2}, 40] (* G. C. Greubel, Oct 22 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))) \\ G. C. Greubel, Oct 22 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Oct 22 2019
(Sage)
def A052954_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))).list()
A052954_list(40) # G. C. Greubel, Oct 22 2019
(GAP) a:=[2, 1, 2, 2];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 22 2019
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved