login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052954 Expansion (2-x-x^2-x^3)/((1-x)(1-x^2-x^3)). 0
2, 1, 2, 2, 2, 3, 3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 87, 115, 152, 201, 266, 352, 466, 617, 817, 1082, 1433, 1898, 2514, 3330, 4411, 5843, 7740, 10253, 13582, 17992, 23834, 31573, 41825, 55406, 73397, 97230, 128802, 170626, 226031, 299427 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For n>2 a(n) = floor{sqrt(a(n-3)*a(n-2) + a(n-2)*a(n-1) + a(n-1)*a(n-3))} - Gerald McGarvey, Sep 19 2004

LINKS

Table of n, a(n) for n=0..48.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1025

Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1)

FORMULA

G.f.: -(-2+x+x^2+x^3)/(-1+x^2+x^3)/(-1+x)

Recurrence: {a(1)=1, a(2)=2, a(3)=2, a(0)=2, -a(n)-a(n+1)+1+a(n+3)=0}

1+Sum(-1/23*(-3-7*_alpha+2*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(_Z^3+_Z^2-1))

lim n->inf a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006) - Gerald McGarvey, Sep 19 2004

a(n) = 2*A023434(n+1)-A023434(n)-A023434(n-2)-A023434(n-3). - R. J. Mathar, Nov 28 2011

MAPLE

spec := [S, {S=Union(Sequence(Prod(Union(Prod(Z, Z), Z), Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

CROSSREFS

Cf. A060006 A023434.

Sequence in context: A029278 A125950 A323088 * A123505 A320779 A114920

Adjacent sequences:  A052951 A052952 A052953 * A052955 A052956 A052957

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 08:55 EDT 2019. Contains 322328 sequences. (Running on oeis4.)