login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052953 Expansion of 2*(1-x-x^2)/((1-x)*(1+x)*(1-2*x)). 7
2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = sum of absolute values of terms in the (n+1)-th row of the triangle in A108561; - Reinhard Zumkeller, Jun 10 2005

a(n) = A078008(n+1) + 2*(1 + n mod 2). - Reinhard Zumkeller, Jun 10 2005

Essentially the same as A128209. - R. J. Mathar, Jun 14 2008

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1024

Index entries for linear recurrences with constant coefficients, signature (2,1,-2).

FORMULA

G.f.: 2*(1-x-x^2)/((1-x^2)*(1-2*x)).

a(n) = a(n-1) + 2*a(n-2) - 2.

a(n) = 1 + Sum_{alpha=RootOf(-1+z+2*z^2)} (1 + 4*alpha)*alpha^(-1-n)/9.

a(2n) = 2*a(n-1)-2, a(2n+1) = 2*a(2n). - Lee Hae-hwang, Oct 11 2002

From Paul Barry, May 24 2004: (Start)

a(n) = A001045(n+1) + 1.

a(n) = (2^(n+1) - (-1)^(n+1))/3 + 1. (End)

E.g.f.: (2*exp(2*x) + 3*exp(x) + exp(-x))/3. - G. C. Greubel, Oct 21 2019

MAPLE

spec:= [S, {S=Union(Sequence(Union(Prod(Union(Z, Z), Z), Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

seq((2^(n+1) +3 +(-1)^n)/3, n=0..40); # G. C. Greubel, Oct 21 2019

MATHEMATICA

LinearRecurrence[{2, 1, -2}, {2, 2, 4}, 40] (* G. C. Greubel, Oct 22 2019 *)

PROG

(Sage) from sage.combinat.sloane_functions import recur_gen2; it = recur_gen2(1, 1, 1, 2); [next(it)+1 for i in range(0, 34)] # Zerinvary Lajos, Jul 06 2008

(Sage) [(2^(n+1) +3 +(-1)^n)/3 for n in (0..40)] # G. C. Greubel, Oct 21 2019

(PARI) vector(41, n, (2^n +3 -(-1)^n)/3 ) \\ G. C. Greubel, Oct 21 2019

(MAGMA) [(2^(n+1) +3 +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Oct 21 2019

(GAP) List([0..40], n-> (2^(n+1) +3 +(-1)^n)/3); # G. C. Greubel, Oct 21 2019

CROSSREFS

Apart from initial term, equals A026644(n+1) + 2.

Cf. A001045.

Sequence in context: A216957 A122536 A238014 * A128209 A274935 A188538

Adjacent sequences:  A052950 A052951 A052952 * A052954 A052955 A052956

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 17:53 EST 2020. Contains 338769 sequences. (Running on oeis4.)