This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052938 Expansion of ( 1+2*x-2*x^2 ) / ( (1+x)*(x-1)^2 ). 11
 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38, 37, 39 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = A035106(n+3) - A035106(n+2). - Reinhard Zumkeller, Oct 06 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 929 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA G.f.: -(-2*x+2*x^2-1)/(-1+x)/(-1+x^2) Recurrence: {a(0)=1, a(2)=2, a(1)=3, a(n)+a(n+1)-n-4 =0} a(n) = (3/4)*(-1)^(1-n) + (1/2)*n + 7/4. A112034(n) = 3*2^a(n); a(n) = A109613(n+2) - A084964(n). - Reinhard Zumkeller, Aug 27 2005 a(n) = A060762(n+1) - 1. - Filip Zaludek, Nov 19 2016 MAPLE spec := [S, {S=Prod(Union(Sequence(Z), Z, Z), Sequence(Prod(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); PROG (PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 1, 1]^n*[1; 3; 2])[1, 1] \\ Charles R Greathouse IV, Sep 02 2015 (Haskell) a052938 n = a052938_list !! n a052938_list = 1 : 3 : 2 : zipWith (-) [5..] a052938_list -- Reinhard Zumkeller, Oct 06 2015 CROSSREFS Cf. A028242 (same sequence with 1,0,2 prefix). Cf. A035106. Sequence in context: A007456 A316141 A119707 * A302391 A140114 A243852 Adjacent sequences:  A052935 A052936 A052937 * A052939 A052940 A052941 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 13:13 EST 2019. Contains 319193 sequences. (Running on oeis4.)