login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052919 a(n) = 1 + 2*3^(n-1) with a(0)=2. 9

%I

%S 2,3,7,19,55,163,487,1459,4375,13123,39367,118099,354295,1062883,

%T 3188647,9565939,28697815,86093443,258280327,774840979,2324522935,

%U 6973568803,20920706407,62762119219,188286357655,564859072963

%N a(n) = 1 + 2*3^(n-1) with a(0)=2.

%C It appears that if s(n) is a first order rational sequence of the form s(1)=3, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 1, then s(n) = a(n)/(a(n)-2).

%H Vincenzo Librandi, <a href="/A052919/b052919.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=902">Encyclopedia of Combinatorial Structures 902</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3).

%F a(n) = 1 + 2*3^(n-1) for n > 0 with a(0) = 2.

%F G.f.: (2 - 5*x + x^2)/((1-x)*(1-3*x)).

%F a(n) = 4*a(n-1) - 3*a(n-2), with a(0)=2, a(1)=3, a(2)=7.

%F a(0) = 2 and a(n) = A100702(n) for n >= 1. - _Omar E. Pol_, Mar 02 2012

%F a(n) = A104743(n) - A104743(n-1). - _J. M. Bergot_, Jun 07 2013

%p spec := [S,{S=Union(Sequence(Prod(Sequence(Z),Union(Z,Z))),Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

%p seq(`if`(n=0, 2, 1 + 2*3^(n-1)), n=0..30); # _G. C. Greubel_, Oct 16 2019

%t Join[{2},Table[2*(3^n+1)-1,{n,0,30}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 14 2011*)

%t CoefficientList[Series[(2-5*x+x^2)/((1-x)*(1-3*x)),{x,0,40}],x] (* _Vincenzo Librandi_, Jun 22 2012 *)

%t LinearRecurrence[{4,-3},{2,3,7},30] (* _Harvey P. Dale_, Dec 12 2017 *)

%o (MAGMA) I:=[2, 3, 7]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 22 2012

%o (PARI) vector(31, n, if(n==1, 2, 1+ 2*3^(n-2))) \\ _G. C. Greubel_, Oct 16 2019

%o (Sage) [2]+[1+2*3^(n-1) for n in (1..30)] # _G. C. Greubel_, Oct 16 2019

%o (GAP) Concatenation([2], List([1..30], n-> 1 + 2*3^(n-1) )); # _G. C. Greubel_, Oct 16 2019

%K easy,nonn

%O 0,1

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 05 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 15:42 EDT 2020. Contains 333127 sequences. (Running on oeis4.)