This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052913 a(n+2) = 5*a(n+1) - 2*a(n), with a(0) = 1, a(1) = 4. 6
 1, 4, 18, 82, 374, 1706, 7782, 35498, 161926, 738634, 3369318, 15369322, 70107974, 319801226, 1458790182, 6654348458, 30354161926, 138462112714, 631602239718, 2881086973162, 13142230386374, 59948977985546, 273460429154982, 1247404189803818, 5690100090709126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Main diagonal of the array: m(1,j)=3^(j-1), m(i,1)=1; m(i,j) = m(i-1,j) + m(i,j-1): 1 3 9 27 81 ... / 1 4 13 40 ... / 1 5 18 58 ... / 1 6 24 82 ... - Benoit Cloitre, Aug 05 2002 a(n) is also the number of 3 X n matrices of integers for which the upper-left hand corner is a 1, the rows and columns are weakly increasing, and two adjacent entries differ by at most 1. - Richard Stanley, Jun 06 2010 a(n) is the number of compositions of n when there are 4 types of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010 If a Stern's sequence based enumeration system of positive irreducible fractions is considered (for example, A007305/A047679, or A162909/A162910, or A071766/A229742, or A245325/A245326, ...), and if it is organized by blocks or levels (n) with 2^n terms (n>=0), and the products numerator*denominator, term by term, are summed at each level n, then the resulting sequence of integers is a(n). - Yosu Yurramendi, May 23 2015 Number of 1’s in the substitution system {0 -> 110, 1 -> 11110} at step n from initial string "1" (1 -> 11110 -> 11110111101111011110110 -> ...) . - Ilya Gutkovskiy, Apr 10 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 894 J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. Index entries for linear recurrences with constant coefficients, signature (5,-2). FORMULA G.f.: (1-x)/(1-5*x+2*x^2). a(n) = Sum_{alpha=RootOf(1 - 5*z + 2*z^2)} (1/17)*(3+alpha)*alpha^(-1-n). a(n) = ((17+3*sqrt(17))/34)*((5+sqrt(17))/2)^n + ((17-3*sqrt(17))/34)*((5-sqrt(17))/2)^n. - N. J. A. Sloane, Jun 03 2002 a(n) = A107839(n) - A107839(n-1). - R. J. Mathar, May 21 2015 a(n) = 2*A020698(n-1), n>1. - R. J. Mathar, Nov 23 2015 E.g.f.: (1/17)*exp(5*x/2)*(17*cosh(sqrt(17)*x/2) + 3*sqrt(17)*sinh(sqrt(17)*x/2)). - Stefano Spezia, Oct 16 2019 MAPLE spec := [S, {S=Sequence(Union(Prod(Sequence(Z), Union(Z, Z)), Z, Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); seq(coeff(series((1-x)/(1-5*x+2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019 MATHEMATICA Transpose[NestList[{Last[#], 5Last[#]-2First[#]}&, {1, 4}, 20]][[1]] (* Harvey P. Dale, Mar 12 2011 *) LinearRecurrence[{5, -2}, {1, 4}, 25] (* Jean-François Alcover, Jan 08 2019 *) PROG (PARI) Vec((1-x)/(1-5*x+2*x^2) + O(x^30)) \\ Michel Marcus, Mar 05 2015 (MAGMA) I:=[1, 4]; [n le 2 select I[n] else 5*Self(n-1)-2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 24 2015 (Sage) def A052913_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1-x)/(1-5*x+2*x^2)).list() A052913_list(30) # G. C. Greubel, Oct 16 2019 (GAP) a:=[1, 4];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 25); Coefficients(R!((1-x)/(1-5*x+2*x^2))); // Marius A. Burtea, Oct 16 2019 CROSSREFS Cf. A007482 (inverse binomial transform). Sequence in context: A257059 A194460 A100192 * A279285 A129160 A187077 Adjacent sequences:  A052910 A052911 A052912 * A052914 A052915 A052916 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS Typo in definition corrected by Bruno Berselli, Jun 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:24 EST 2019. Contains 329910 sequences. (Running on oeis4.)