This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052906 Expansion of (1-x^2)/(1-3*x-x^2). 7
 1, 3, 9, 30, 99, 327, 1080, 3567, 11781, 38910, 128511, 424443, 1401840, 4629963, 15291729, 50505150, 166807179, 550926687, 1819587240, 6009688407, 19848652461, 65555645790, 216515589831, 715102415283, 2361822835680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Image of 1/(1-3*x) under the mapping g(x) -> g(x/(1+x^2)). - Paul Barry, Jan 16 2005 LINKS Robert Israel, Table of n, a(n) for n = 0..1920 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 885 Index entries for linear recurrences with constant coefficients, signature (3,1). FORMULA G.f.: (1-x^2)/(1-3*x-x^2). a(n)+3*a(n+1)-a(n+2)=0, with a(0)=1, a(1)=3, a(2)=9. a(n) = Sum_{alpha=RootOf(-1+3*_Z+_Z^2)} (-3/13)*(3*alpha - 2)*alpha^(-1-n). a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, k)*3^(n-2*k). - Paul Barry, Jan 16 2005 If p(i)=3*(i mod 2) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p(j-i+1), (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010 G.f.: G(0)*(1-x^2)/(2-3*x), where G(k)= 1 + 1/(1 - (x*(13*k-9))/( x*(13*k+4) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013 a(n) = 3*( ((3+sqrt(13))/2)^n - ((3-sqrt(13))/2)^n )/sqrt(13), for n>=1. - Bogart B. Strauss, Jul 19 2013 E.g.f.: 1 + 6*exp(3*x/2)*sinh(sqrt(13)*x/2)/sqrt(13). - Ilya Gutkovskiy, Nov 11 2016 a(n) = A006190(n+1) - A006190(n-1). - R. J. Mathar, Oct 06 2017 a(n) = 3*Fibonacci(n, 3) for n > 0, where Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Oct 14 2019 MAPLE spec := [S, {S=Sequence(Prod(Union(Z, Z, Z), Sequence(Prod(Z, Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); # alternative: f:= gfun:-rectoproc({a(0)=1, a(n)+3*a(n+1)-a(n+2)=0, a(1)=3, a(2)=9}, a(n), remember): map(f, [\$0..50]); # Robert Israel, Nov 11 2016 MATHEMATICA Table[If[n==0, 1, 3*Fibonacci[n, 3]], {n, 0, 30}] (* G. C. Greubel, Oct 14 2019 *) PROG (PARI) Vec((1-x^2)/(1-3*x-x^2) + O(x^40)) \\ Michel Marcus, Nov 11 2016 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-3*x-x^2) )); // G. C. Greubel, Oct 14 2019 (Sage) def A052906_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1-x^2)/(1-3*x-x^2)).list() A052906_list(30) # G. C. Greubel, Oct 14 2019 (GAP) a:=[3, 9];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Oct 14 2019 CROSSREFS Cf. A003688 (partial sums). Sequence in context: A250128 A199137 A089978 * A102898 A050181 A275690 Adjacent sequences:  A052903 A052904 A052905 * A052907 A052908 A052909 KEYWORD easy,nonn,changed AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 08:00 EDT 2019. Contains 328315 sequences. (Running on oeis4.)