login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052875 E.g.f.: (exp(x)-1)^2/(2-exp(x)). 8
0, 0, 2, 12, 74, 540, 4682, 47292, 545834, 7087260, 102247562, 1622632572, 28091567594, 526858348380, 10641342970442, 230283190977852, 5315654681981354, 130370767029135900, 3385534663256845322, 92801587319328411132, 2677687796244384203114, 81124824998504073881820 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Previous name was: A simple grammar.

Stirling transform of A005359(n-1)=[0,0,2,0,24,0,...] is a(n-1)=[0,0,2,12,74,...]. - Michael Somos, Mar 04 2004

Stirling transform of -(-1)^n*A052566(n-1)=[1,-1,4,-6,48,...] is a(n-1)=[1,0,2,12,74,...]. - Michael Somos, Mar 04 2004

Stirling transform of A000142(n)=[0,2,6,24,120,...] is a(n)=[0,2,12,74,...]. - Michael Somos, Mar 04 2004

Stirling transform of A007680(n)=[2,10,42,216,...] is a(n+1)=[2,12,74,...]. - Michael Somos, Mar 04 2004

a(n) is the number of chains in the power set of {1,2,...,n} that do not contain the empty set and do not contain {1,2,...,n}.  Equivalently, a(n) is the number of ordered set partitions of {1,2,...,n} into at least 2 classes. - Geoffrey Critzer, Sep 01 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 846

R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.

Wikipedia, Ordered Bell number

FORMULA

Second column of A084416: Sum_{i=2..n} i!*Stirling2(n, i) = A000670(n)-1. - Vladeta Jovovic, Sep 15 2003

E.g.f.: (exp(x)-1)^2/(2-exp(x)).

a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 25 2014

E.g.f.: A(x)*(1/(1 - A(x)) - 1) where A(x)=exp(x)-1. - Geoffrey Critzer, Sep 01 2014

EXAMPLE

a(3) = 12 because we have: {{1}}, {{2}}, {{3}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1}, {1,2}}, {{1}, {1,3}}, {{2}, {1,2}}, {{2}, {2,3}}, {{3}, {1,3}}, {{3}, {2,3}}. - Geoffrey Critzer, Sep 01 2014

MAPLE

spec := [S, {B = Set(Z, 1 <= card), C = Sequence(B, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n),  n=0..20);

MATHEMATICA

CoefficientList[Series[(E^x-1)^2/(2-E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)

PROG

(PARI) a(n)=if(n<0, 0, n!*polcoeff(subst(y^2/(1-y), y, exp(x+x*O(x^n))-1), n))

(Sage)

def A052875(n):

    return add(add((-1)^(j-i)*binomial(j, i)*i^n for i in range(n+1)) for j in range(n+1)) - 1

[A052875(n) for n in range(19)] # Peter Luschny, Jul 22 2014

CROSSREFS

Cf. A007047, A038719.

Sequence in context: A014351 A074616 A006936 * A037725 A037620 A198474

Adjacent sequences:  A052872 A052873 A052874 * A052876 A052877 A052878

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

New name using e.g.f., Vaclav Kotesovec, Feb 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 16:49 EDT 2018. Contains 316269 sequences. (Running on oeis4.)