login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052787 A simple grammar. Product of 5 consecutive integers. 14

%I

%S 0,0,0,0,0,120,720,2520,6720,15120,30240,55440,95040,154440,240240,

%T 360360,524160,742560,1028160,1395360,1860480,2441880,3160080,4037880,

%U 5100480,6375600,7893600,9687600,11793600,14250600,17100720,20389320

%N A simple grammar. Product of 5 consecutive integers.

%C For n>5: a(n) = A173333(n,n-5). - _Reinhard Zumkeller_, Feb 19 2010

%C Appears in Harriot along with the formula (for a different offset) a(n) = n^5 + 10n^4 + 35n^3 + 50n^2 + 24n, see links. - _Charles R Greathouse IV_, Oct 22 2014

%H Vincenzo Librandi, <a href="/A052787/b052787.txt">Table of n, a(n) for n = 0..1000</a>

%H Thomas Harriot, <a href="http://echo.mpiwg-berlin.mpg.de/MPIWG:5PYT50NY">Manuscript 6782</a>, <a href="http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=%2Fmpiwg%2Fonline%2Fpermanent%2Flibrary%2FHSPGZ0AE%2F&amp;viewMode=images&amp;tocMode=thumbs&amp;tocPN=1&amp;query=&amp;searchPN=1&amp;queryType=&amp;characterNormalization=reg&amp;pn=153">p. 77</a>, c. 1599.

%H INRIA Algorithms Project, <a href="http://algo.inria.fr/ecs/ecs?searchType=1&amp;service=Search&amp;searchTerms=744">Encyclopedia of Combinatorial Structures 744</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)=n!/(n-5)!.

%F E.g.f.: x^5*exp(x).

%F Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, (-1-n)*a(n)+(-4+n)*a(n+1), a(5)=120}.

%F O.g.f.: 120*x^5/(-1+x)^6. - _R. J. Mathar_, Nov 16 2007

%F a(n) = a(n-1) + 5*A052762(n). - _J. M. Bergot_, May 30 2012

%p spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p seq(numbperm (n,5), n=0..31); # _Zerinvary Lajos_, Apr 26 2007

%p G(x):=x^5*exp(x): f[0]:=G(x): for n from 1 to 31 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..31); # _Zerinvary Lajos_, Apr 05 2009

%t Times@@@(Partition[Range[-4,35],5,1]) (* _Harvey P. Dale_, Feb 04 2011 *)

%o (MAGMA) [n*(n-1)*(n-2)*(n-3)*(n-4): n in [0..35]]; // _Vincenzo Librandi_, May 26 2011

%o (PARI) a(n)=120*binomial(n,5) \\ _Charles R Greathouse IV_, Nov 20 2011

%Y Cf. A002378, A007531, A052762.

%Y Equals 120 * C(n, 5) = 120 * A000389(n).

%Y Equals 4 * A054559.

%K easy,nonn

%O 0,6

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _Henry Bottomley_, Mar 20 2000

%E Formula corrected by _Philippe Deléham_, Dec 12 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 15:13 EST 2016. Contains 279003 sequences.