login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052762 Products of 4 consecutive integers: a(n) = n*(n-1)*(n-2)*(n-3). 31
0, 0, 0, 0, 24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160, 24024, 32760, 43680, 57120, 73440, 93024, 116280, 143640, 175560, 212520, 255024, 303600, 358800, 421200, 491400, 570024, 657720, 755160, 863040, 982080, 1113024 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Also, starting with n=4, the square of area of cyclic quadrilateral with sides n, n-1, n-2, n-3. - Zak Seidov, Jun 20 2003

a(n) + 1 = A062938(n-4) for n > 4. - Amarnath Murthy, Dec 13 2003

For n > 4: a(n) = A173333(n, n-4). - Reinhard Zumkeller, Feb 19 2010

Number of n-colorings of the complete graph on 4 vertices, which is also the tetrahedral graph. - Eric M. Schmidt, Oct 31 2012

Cf. A130534 for relations to colored forests and disposition of flags on flagpoles. - Tom Copeland, Apr 05 2014

Number of 4-permutations of the set {1, 2, ..., n}. - Joerg Arndt, Apr 05 2014

LINKS

Eric M. Schmidt, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 719

Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014.

Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv:1508.07894 [math.NT], 2015.

Eric Weisstein, CyclicQuadrilateral

Wikipedia, Pochhammer symbol.

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

a(n) = n*(n-1)*(n-2)*(n-3) = n!/(n-4)! (for n >= 4).

a(n) = A001094(n) - n.

E.g.f.: x^4*exp(x).

Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-1-n)*a(n) + (n-3)*a(n+1)}.

a(n) = numbperm(n, 4). - Zerinvary Lajos, Apr 26 2007

O.g.f.: -24*x^4/(-1+x)^5. - R. J. Mathar, Nov 23 2007

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=24. - Harvey P. Dale, May 09 2012

a(n) = a(n-1) + 4*A007531(n). - J. M. Bergot, May 30 2012

a(n) = (n)_4 = Pochhammer(n,4), using the "falling factorial" convention; other authors write Pochhammer(x,k) for what is denoted x^(k) in the Wikipedia article, then a(n) = (n-3)^(4). - M. F. Hasler, Oct 20 2013

a(n) - 1 = A069756(n-2) for n >= 4. - Jean-Christophe Hervé, Nov 01 2015

a(n) = 24 * A000332(n). - Bruce J. Nicholson, Apr 03 2017

MAPLE

spec := [S, {B=Set(Z), S=Prod(Z, Z, Z, Z, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

seq(numbperm (n, 4), n=0..34); # Zerinvary Lajos, Apr 26 2007

G(x):=x^4*exp(x): f[0]:=G(x): for n from 1 to 34 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..34); # Zerinvary Lajos, Apr 05 2009

MATHEMATICA

Table[n*(n+1)*(n+2)*(n+3), {n, -3, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)

Times@@@Partition[Range[-3, 60], 4, 1] (* Harvey P. Dale, May 09 2012 *)

LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 0, 0, 0, 24}, 60] (* Harvey P. Dale, May 09 2012 *)

PROG

(PARI) a(n)=24*binomial(n, 4) \\ Charles R Greathouse IV, Nov 20 2011

(Maxima) A052762(n):=n*(n-1)*(n-2)*(n-3)$

makelist(A052762(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */

(MAGMA) [n*(n-1)*(n-2)*(n-3): n in [0..30]]; \\ G. C. Greubel, Nov 19 2017

CROSSREFS

Cf. A001094, A002378, A007531, A052787.

Sequence in context: A229567 A069074 A059775 * A217056 A099317 A293018

Adjacent sequences:  A052759 A052760 A052761 * A052763 A052764 A052765

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from Henry Bottomley, Mar 20 2000

Formula corrected by Philippe Deléham, Dec 12 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 01:20 EST 2018. Contains 317279 sequences. (Running on oeis4.)