This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052749 2n*S2(n-1,2). 0
 0, 0, 0, 6, 24, 70, 180, 434, 1008, 2286, 5100, 11242, 24552, 53222, 114660, 245730, 524256, 1114078, 2359260, 4980698, 10485720, 22020054, 46137300, 96468946, 201326544, 419430350, 872415180, 1811939274, 3758096328, 7784628166, 16106127300, 33285996482 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 705 Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4). FORMULA E.g.f.: exp(x)^2*x-2*x*exp(x)+x. Recurrence: {a(1)=0, a(2)=0, a(3)=6, (2*n^2+6*n+4)*a(n)+(-6*n-3*n^2)*a(n+1)+(n^2+n)*a(n+2)}. a(n) = Sum(n*2^(k-2), k=3..n). - Zerinvary Lajos, Oct 09 2006 a(n) = n*(2^(n-1)-2) = n*A000918(n-1), n>=3. - Mitch Harris, Oct 25 2006 O.g.f.: 2*x^3*(3-6*x+2*x^2)/((-1+x)^2*(-1+2*x)^2). - R. J. Mathar, Dec 05 2007 a(n) = sum_{j=1..n} ( sum_{i=2..n-1} (j+1)*2^(j-i-1) ). - Wesley Ivan Hurt, Nov 17 2014 a(n) = n*(2^n-4)/2, n>1. - Wesley Ivan Hurt, Nov 17 2014 a(n) = 2*A260006(n-2). - R. J. Mathar, Apr 26 2017 MAPLE spec := [S, {B=Set(Z, 1 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); g := taylor(exp(x)^2*x-2*x*exp(x)+x, x=0, 121): q := seq(coeff(g, x, i)*i!, i=0..120); MATHEMATICA Table[If[n < 3, 0, (n*(2^n - 3) - n)/2], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 30 2011 *) LinearRecurrence[{6, -13, 12, -4}, {0, 0, 0, 6, 24, 70}, 40] (* Harvey P. Dale, Aug 30 2017 *) PROG (MAGMA) [n le 2 select 0 else n*(2^(n-1)-2): n in [0..40]]; // Vincenzo Librandi, Nov 18 2014 CROSSREFS Sequence in context: A274772 A234271 A006528 * A262445 A090574 A294842 Adjacent sequences:  A052746 A052747 A052748 * A052750 A052751 A052752 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)