This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052746 a(0) = 0; a(n) = (2*n)^(n-1), n > 0. 7
 0, 1, 4, 36, 512, 10000, 248832, 7529536, 268435456, 11019960576, 512000000000, 26559922791424, 1521681143169024, 95428956661682176, 6502111422497947648, 478296900000000000000, 37778931862957161709568, 3189059870763703892770816, 286511799958070431838109696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Expansion of inverse of x*exp(2x). Number of well-colored directed trees on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child. Number of labeled rooted directed trees on n nodes. LINKS Robert Israel, Table of n, a(n) for n = 0..350 C. Banderier, J.-M. Le Bars and V. Ravelomanana, Generating functions for kernels of digraphs, arXiv:math/0411138 [math.CO], 2004. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 702 FORMULA E.g.f.: -1/2*W(-2*x), where W is Lambert's W function. From Robert Israel, Jun 16 2016: (Start) E.g.f. g(x) satisfies g(x) = x*exp(2*g(x)) and (1-2g(x)) g'(x) = g(x). a(n) = (2*n/(n-1)) * Sum_{j=1..n-1} binomial(n-1,j)*a(j)*a(n-j) for n >= 2. (End) a(n) = [x^n] x/(1 - 2*n*x). - Ilya Gutkovskiy, Oct 12 2017 MAPLE spec := [S, {B=Set(S), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); PROG (Sage)[lucas_number1(n, 2*n, 0) for n in xrange(0, 17)] # Zerinvary Lajos, Mar 09 2009 (PARI) a(n)=if(n, (2*n)^(n-1), 0) \\ Charles R Greathouse IV, Nov 20 2011 CROSSREFS Cf. A038057, A097627. Sequence in context: A008546 A277404 A024253 * A145084 A179422 A098629 Adjacent sequences:  A052743 A052744 A052745 * A052747 A052748 A052749 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS New description from Vladeta Jovovic, Mar 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:42 EDT 2018. Contains 316522 sequences. (Running on oeis4.)