login
Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.
9

%I #30 May 29 2022 03:18:03

%S 0,0,0,0,0,120,2880,70560,1935360,59875200,2075673600,79913433600,

%T 3387499315200,156883562035200,7884404656128000,427447366714368000,

%U 24869664972472320000,1545805113445232640000,102232975285590589440000

%N Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.

%H G. C. Greubel, <a href="/A052721/b052721.txt">Table of n, a(n) for n = 0..350</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=677">Encyclopedia of Combinatorial Structures 677</a>

%F D-finite with recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, a(6)=2880, (n+2)*a(n+2) = (6*n^2 + 8*n - 8)*a(n+1) + (40 + 44*n = 4*n^2 - 8*n^3)*a(n).

%F a(n) = 2*Pi^(-1/2)*4^(n-3)*Gamma(n-5/2)*n*(n-4) for n>3. - _Mark van Hoeij_, Oct 30 2011

%F a(n) = n!*A002057(n-5). - _R. J. Mathar_, Oct 18 2013

%F From _G. C. Greubel_, May 28 2022: (Start)

%F G.f.: 4!*x*(d/dx)( x^5 * Hypergeometric2F0([2, 5/2], [], 4*x) ).

%F E.g.f.: (x/2)*(1 - 4*x + 2*x^2 - (1-2*x)*sqrt(1-4*x)). (End)

%p spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* _G. C. Greubel_, May 28 2022 *)

%o (SageMath)

%o def A052721(n):

%o if (n<5): return 0

%o else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3)

%o [A052721(n) for n in (0..30)] # _G. C. Greubel_, May 28 2022

%Y Cf. A052711, A052712, A052713, A052714, A052715, A052716, A052717, A052718, A052719, A052720, A052722, A052723.

%Y Cf. A000108, A002057.

%K easy,nonn

%O 0,6

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000