The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052702 A simple context-free grammar. 4
 0, 0, 0, 0, 1, 2, 3, 6, 13, 26, 52, 108, 226, 472, 993, 2106, 4485, 9586, 20576, 44332, 95814, 207688, 451438, 983736, 2148618, 4702976, 10314672, 22664452, 49887084, 109985772, 242854669, 537004218, 1189032613, 2636096922, 5851266616, 13002628132, 28925389870, 64412505472, 143576017410 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Contribution from Paul Barry, May 24 2009: (Start) Hankel transform of A052702 is A160705. Hankel transform of A052702(n+1) is A160706. Hankel transform of A052702(n+2) is -A131531(n+1). Hankel transform of A052702(n+3) is A160706(n+5). Hankel transform of A052702(n+4) is A160705(n+5). (End) For n>1, number of Dyck (n-1)-paths with each descent length one greater or one less than the preceding ascent length. [David Scambler, May 11 2012] LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 654 FORMULA G.f.: (1/2)/x^2*(1-x-(1-2*x+x^2-4*x^3)^(1/2))-(1/2)/x*(1-x-(1-2*x+x^2-4*x^3)^(1/2))-x. Recurrence: {a(1)=0, a(2)=0, a(4)=1, a(3)=0, a(6)=3, a(7)=6, a(5)=2, (-2+4*n)*a(n)+(-7-5*n)*a(n+1)+(8+3*n)*a(n+2)+(-13-3*n)*a(n+3)+(n+6)*a(n+4)}. Contribution from Paul Barry, May 24 2009: (Start) G.f.: (1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2). a(n+1) = sum{k=0..n-1, C(n-k-1,2k-1)*A000108(k)}. (End) MAPLE spec := [S, {B=Prod(C, Z), S=Prod(B, B), C=Union(S, B, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); PROG (PARI) x='x+O('x^66); s='a0+(1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2); v=Vec(s);  v[1]-='a0;  v /* Joerg Arndt, May 11 2012 */ CROSSREFS Sequence in context: A290991 A007910 A293315 * A058766 A127601 A030038 Adjacent sequences:  A052699 A052700 A052701 * A052703 A052704 A052705 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from Joerg Arndt, May 11 2012. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 28 13:26 EDT 2020. Contains 338055 sequences. (Running on oeis4.)