login
A052617
E.g.f. (1+x-x^2)/((1-x)(1-2x)).
0
1, 4, 18, 114, 936, 9480, 114480, 1607760, 25764480, 464123520, 9286099200, 204334099200, 4904497382400, 127523158963200, 3570735629260800, 107123376552192000, 3427968972460032000, 116551300751069184000
OFFSET
0,2
FORMULA
E.g.f.: -(-x+x^2-1)/(-1+2*x)/(-1+x)
Recurrence: {a(0)=1, a(1)=4, (2*n^2+6*n+4)*a(n) +(-6-3*n)*a(n+1) +a(n+2)=0, a(2)=18}
(-1+5*2^(n-1))*n!, n>0.
a(n)=n!*A052549(n). - R. J. Mathar, Jun 03 2022
MAPLE
spec := [S, {S=Prod(Union(Z, Sequence(Z)), Sequence(Union(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+x-x^2)/((1-x)(1-2x)), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 25 2018 *)
CROSSREFS
Sequence in context: A294469 A308462 A053483 * A141714 A220223 A137567
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved