login
A052613
E.g.f. (1-2x)/(1-2x-x^2+x^3).
0
1, 0, 2, 6, 72, 720, 10080, 156240, 2822400, 56972160, 1280966400, 31654022400, 853580851200, 24932991283200, 784343085926400, 26435945023488000, 950417730662400000, 36304660098330624000, 1468365202287599616000
OFFSET
0,3
FORMULA
E.g.f.: -(-1+2*x)/(x^3-x^2-2*x+1)
Recurrence: {a(1)=0, a(0)=1, a(2)=2, (n^3+6*n^2+11*n+6)*a(n) +(-n^2-5*n-6)*a(n+1) +(-2*n-6)*a(n+2) +a(n+3)=0}
Sum(1/7*(-1+3*_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))*n!
a(n)=n!*A077998(n-2), n>=2. - R. J. Mathar, Jun 03 2022
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Sequence(Prod(Z, Sequence(Z)))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-2x)/(1-2x-x^2+x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 08 2015 *)
CROSSREFS
Sequence in context: A171582 A152885 A295182 * A156493 A339299 A218891
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved