This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052565 E.g.f. (1+x^3-x^4)/(1-x). 2
 1, 1, 2, 12, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of partitions of n-set into "lists", in which every even list appears an odd number of times, cf. A000262. - Alois P. Heinz, May 10 2016 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..450 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 507 FORMULA E.g.f.: (-1+x^4-x^3)/(-1+x). Recurrence: {a(1)=1, a(0)=1, (-1-n)*a(n)+a(n+1)=0, a(2)=2, a(4)=24, a(3)=12}. a(n) = n! for n>3. MAPLE spec := [S, {S=Union(Sequence(Z), Prod(Z, Z, Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(`if`(i::even and j::even, 0, b(n-i*j, i-1)*       multinomial(n, n-i*j, i\$j)/j!*i!^j), j=0..n/i)))     end: a:= n-> b(n\$2): seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016 CROSSREFS Cf. A000262, A102760. Sequence in context: A247086 A121119 A226899 * A176710 A141900 A211374 Adjacent sequences:  A052562 A052563 A052564 * A052566 A052567 A052568 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 11:17 EDT 2019. Contains 323539 sequences. (Running on oeis4.)