The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052524 Number of ordered labeled rooted trees on n nodes with non-leaf nodes having more than two children. 3
 0, 1, 0, 6, 24, 480, 5760, 126000, 2580480, 69310080, 1959552000, 64505548800, 2292022656000, 90366525849600, 3843167789260800, 177248722210560000, 8758468152225792000, 463225965106544640000, 26058454876652470272000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The correspondence between rooted trees and dissection of (n+1)-gon as in A046736 is just like the case for Catalan numbers and binary trees. LINKS G. C. Greubel, Table of n, a(n) for n = 0..370 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 94 FORMULA a(n) = n! * A046736(n+1) for n>0. E.g.f.: A(x)=sum_{n>0} a(n)*x^n/n! satisfies A(x)-A(x)^2-A(x)^3 = x*(1-A(x)). Recurrence: a(0)=0, a(1)=1, a(2)=0, a(3)=6, 8*n*(n+1)*(n+2)*(1-2*n)*a(n) +6*(13*n+10)*(2*n+1)*(n+2)*a(n+1) -24*(2*n+5)*(4*n+7)*a(n+2) -4*(19*n+40)*a(n+3) +35*a(n+4) = 0 a(n) ~ n^(n-1) * sqrt(r*(1-s)/(2+6*s)) / (exp(n) * r^n), where r = 0.2933671276754004454... is the root of the equation 5-8*r-32*r^2+4*r^3 = 0 and s = 0.40303171676268477587... is the root of the equation 1-2*s-2*s^2+2*s^3 = 0. - Vaclav Kotesovec, Jan 08 2014 MAPLE spec := [S, {S=Union(Z, Sequence(S, card >= 3))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); MATHEMATICA CoefficientList[InverseSeries[Series[1 + 1/(x-1) + 2*x + x^2, {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 08 2014 *) PROG (PARI) a(n)=if(n<1, 0, n!*polcoeff(serreverse((x-x^2-x^3)/(1-x) + O(x^(n+2))), n)) CROSSREFS Cf. A046736. Sequence in context: A128614 A285018 A139240 * A267032 A234635 A036284 Adjacent sequences: A052521 A052522 A052523 * A052525 A052526 A052527 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 09:51 EST 2023. Contains 359915 sequences. (Running on oeis4.)