login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052517 Number of ordered pairs of cycles over all n-permutations having two cycles. 10
0, 0, 2, 6, 22, 100, 548, 3528, 26136, 219168, 2053152, 21257280, 241087680, 2972885760, 39605518080, 566931294720, 8678326003200, 141468564787200, 2446811181158400, 44753976117043200, 863130293635276800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is a function of the harmonic numbers. If we discard the first term and set a(0)=0, a(1)=2..then a(n) = 2n!*h(n) where h(n)=sum(1/k,k=1..n). - Gary Detlefs, Aug 04 2010

a(n+1) is twice the sum over all permutations of the number of its cycles (fixed points included). - Olivier Gérard, Oct 23 2012

REFERENCES

G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 30.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 83

FORMULA

E.g.f.: (log(1 - x))^2. - Michael Somos, Feb 05 2004

a(n) ~ 2*(n-1)!*log(n)*(1+gamma/log(n)), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 08 2012

a(n) = sum( 2*k*|S1(n-1,k)|, k=1..n-1) = 2*|S1(n,2)|. - Olivier Gérard, Oct 23 2012

0 = a(n) * n^2 - a(n+1) * (2*n+1) + a(n+2) for all n in Z. - Michael Somos, Apr 23 2014

0 = a(n)*(a(n+1) - 7*a(n+2) + 6*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) - 6*a(n+2) + 4*a(n+3)) + a(n+2)*(-3*a(n+2)) if n>0. - Michael Somos, Apr 23 2014

EXAMPLE

a(3)=6 because we have the ordered pairs of cycles: ((1)(23)), ((23)(1)), ((2)(13)), ((13)(2)), ((3)(12)), ((12)(3)). - Geoffrey Critzer, Jun 13 2013

G.f. = 2*x^2 + 6*x^3 + 22*x^4 + 100*x^5 + 548*x^6 + 3528*x^7 + ...

MAPLE

pairsspec := [S, {S=Prod(B, B), B=Cycle(Z)}, labeled]: seq(combstruct[count](pairsspec, size=n), n=0..20);

MATHEMATICA

Flatten[{0, Table[(n+1)!*Sum[1/(k*(n+1-k)), {k, 1, n}], {n, 0, 20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)

PROG

(PARI) {a(n) = if( n<0, 0, n! * sum(k=1, n-1, 1 / (k * (n - k))))};

CROSSREFS

Equals 2 * A000254(n+1), n>0.

Equals, for n=>2, the second right hand column of A028421.

Sequence in context: A009468 A088819 A177478 * A245119 A012270 A009585

Adjacent sequences:  A052514 A052515 A052516 * A052518 A052519 A052520

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

Typos in Maple program fixed by Johannes W. Meijer, Oct 16 2009

Name improved by Geoffrey Critzer, Jun 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.