This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052512 Number of rooted labeled trees of height at most 2. 9
 0, 1, 2, 9, 40, 205, 1176, 7399, 50576, 372537, 2936080, 24617131, 218521128, 2045278261, 20112821288, 207162957135, 2228888801056, 24989309310961, 291322555295904, 3524580202643155, 44176839081266360, 572725044269255661, 7668896804574138232, 105920137923940473079 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equivalently, number of mappings f from a set of n elements into itself such that f o f (f applied twice) is constant. - Robert FERREOL, Mar 05 2016 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 58 FORMULA E.g.f.: x*exp(x*exp(x)). a(n) = n * A000248(n-1). - Olivier Gérard, Aug 03 2012. a(n) = Sum_{k=0..n-1} n*C(n-1,k)*(n-k-1)^k. - Alois P. Heinz, Mar 15 2013 EXAMPLE From Robert FERREOL, Mar 05 2016: (Start) For n = 3 the a(3) = 9 mappings from {a,b,c} into itself are: f_1(a) = f_1(b) = f_1(c) = a f_2(c) = b, f_2(b) = f_2(a) = a f_3(b) = c, f_3(c) = f_3(a) = a and 6 others, associated to b and c. (End) MAPLE spec := [S, {S=Prod(Z, Set(T1)), T2=Z, T1=Prod(Z, Set(T2))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); # second Maple program: a:= n-> n*add(binomial(n-1, k)*(n-k-1)^k, k=0..n-1); seq(a(n), n=0..30);  # Alois P. Heinz, Mar 15 2013 MATHEMATICA nn=20; a=x Exp[x]; Range[0, nn]! CoefficientList[Series[x Exp[a], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 19 2012 *) PROG (PARI) N=33;  x='x+O('x^N); egf=x*exp(x*exp(x)); v=Vec(serlaplace(egf)); vector(#v+1, n, if(n==1, 0, v[n-1])) /* Joerg Arndt, Sep 15 2012 */ CROSSREFS Cf. A000248 (forests with n nodes and height at most 1). Cf. A000551. Sequence in context: A038112 A268039 A235596 * A166554 A038156 A296964 Adjacent sequences:  A052509 A052510 A052511 * A052513 A052514 A052515 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 09:28 EST 2019. Contains 320249 sequences. (Running on oeis4.)