login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052482 a(n) = 2^(n-2)*binomial(n+1,2). 6
3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784, 58384711680, 124822487040 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Also the number of 4-cycles in the (n+1)-folded cube graph for n > 3. - Eric W. Weisstein, Mar 21 2018

LINKS

Colin Barker, Table of n, a(n) for n = 2..1000

Eric Weisstein's World of Mathematics, Folded Cube Graph

Eric Weisstein's World of Mathematics, Graph Cycle

Index entries for linear recurrences with constant coefficients, signature (6,-12,8).

FORMULA

a(n) = (1/2) * Sum_{k=0..n-1} Sum_{i=0..n-1} (k+1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017

From Colin Barker, Sep 22 2017: (Start)

G.f.: x^2*(3 - 6*x + 4*x^2) / (1 - 2*x)^3.

a(n) = 2^(n-3)*n*(1 + n).

a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n>4.

(End)

MATHEMATICA

Table[2^(n - 2) Binomial[n + 1, 2], {n, 2, 28}] (* Michael De Vlieger, Sep 21 2017 *)

LinearRecurrence[{6, -12, 8}, {3, 12, 40}, 20] (* Eric W. Weisstein, Mar 21 2018 *)

CoefficientList[Series[(-3 + 6 x - 4 x^2)/(-1 + 2 x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Mar 21 2018 *)

PROG

(PARI) Vec(x^2*(3 - 6*x + 4*x^2) / (1 - 2*x)^3 + O(x^40)) \\ Colin Barker, Sep 22 2017

CROSSREFS

Essentially the same as A080929.

Cf. A301459 (6-cycles in the n-folded cube graph).

Sequence in context: A007993 A293366 A080929 * A061136 A308648 A247002

Adjacent sequences:  A052479 A052480 A052481 * A052483 A052484 A052485

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 16 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 11:44 EDT 2019. Contains 325254 sequences. (Running on oeis4.)