%I #29 Jun 04 2022 21:55:18
%S 1,0,0,2,2,0,0,121,126,0,31187,2226896,17265701,0,69303997733
%N Number of trimagic series for squares of order n.
%C Asymptotic results are presented in Quist for magic cube and hypercube series, bimagic series, and trimagic series. - _Jonathan Vos Post_, Jun 04 2013
%D M. Kraitchik, Mathematical Recreations, 1942, see Section 7.10.
%H Christian Boyer, <a href="http://www.multimagie.com/indexengl.htm">Multimagic Squares</a>
%H Michael Quist, <a href="http://arxiv.org/abs/1306.0616">Asymptotic enumeration of magic series</a>, arXiv:1306.0616v1 [math.CO], June 3, 2013.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultimagicSeries.html">Multimagic Series</a>
%Y Cf. A052456, A052457, A090653, A092312, A090037.
%K nonn,more,nice
%O 1,4
%A _Eric W. Weisstein_
%E Corrected and extended Nov 15 2003, using the values of a(3) through a(12) from Christian Boyer's web site. - _N. J. A. Sloane_
%E One more term from Christian Boyer (cboyer(AT)club-internet.fr), Nov 05 2004
%E One further term from Christian Boyer (cboyer(AT)club-internet.fr), May 30 2005
%E a(15) computed by Michael Quist, and communicated by Christian Boyer (cboyer(AT)club-internet.fr), Feb 06 2009