|
|
A052410
|
|
Write n = m^k with m, k integers, k >= 1, then a(n) = smallest possible choice for m.
|
|
86
|
|
|
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Value of m in m^p = n, where p is the largest possible power (see A052409).
For n > 1, n is a perfect power iff a(n) <> n. - Reinhard Zumkeller, Oct 13 2002
a(n)^A052409(n) = n. - Reinhard Zumkeller, Apr 06 2014
Every integer root of n is a power of a(n). All entries (except 1) belong to A007916. - Gus Wiseman, Sep 11 2017
|
|
LINKS
|
Daniel Forgues, Table of n, a(n) for n=1..100000
Eric Weisstein's World of Mathematics, Power
Eric Weisstein's World of Mathematics, Perfect Power
|
|
FORMULA
|
a(n) = A007916(A278028(n,1)). - Gus Wiseman, Sep 11 2017
|
|
MATHEMATICA
|
Table[If[n==1, 1, n^(1/(GCD@@(Last/@FactorInteger[n])))], {n, 100}]
|
|
PROG
|
(Haskell)
a052410 n = product $ zipWith (^)
(a027748_row n) (map (`div` (foldl1 gcd es)) es)
where es = a124010_row n
-- Reinhard Zumkeller, Jul 15 2012
(PARI) a(n) = if (ispower(n, , &r), r, n); \\ Michel Marcus, Jul 19 2017
|
|
CROSSREFS
|
Cf. a(A001597(k)) = A025478(k), A007916, A027748, A052409, A072775, A124010, A175781, A278028, A288636, A289023.
Sequence in context: A019555 A243074 A304776 * A327501 A175781 A072775
Adjacent sequences: A052407 A052408 A052409 * A052411 A052412 A052413
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
Definition edited (in a complementary form to A052409) by Daniel Forgues, Mar 14 2009
Corrected by Charles R Greathouse IV, Sep 02 2009
Definition edited by N. J. A. Sloane, Sep 03 2010
|
|
STATUS
|
approved
|
|
|
|